Patents by Inventor Nichaluk Leartprapun

Nichaluk Leartprapun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920930
    Abstract: Disclosed are devices and techniques based on optical coherence tomography (OCT) technology in combination with optical actuation. A system for providing optical actuation and optical sensing can include an optical coherence tomography (OCT) device that performs optical imaging of a sample based on optical interferometry from an optical sampling beam interacting with an optical sample and an optical reference beam; an OCT light source to provide an OCT imaging beam into the OCT device which splits the OCT imaging beam into the optical sampling beam and the optical reference beam; and a light source that produces an optical actuation beam that is coupled along with the optical sampling beam to be directed to the sample to actuate particles or structures in the sample so that the optical imaging captures information of the sample under the optical actuation.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 5, 2024
    Assignee: Cornell University
    Inventors: Steven G Adie, Yuechuan Lin, Nichaluk Leartprapun
  • Publication number: 20240041327
    Abstract: Methods, systems, and devices for generating resolution-enhanced space-domain image of a target sample based on optical coherent tomography (OCT) imaging technologies are disclosed. In an aspect, a system includes a processing platform comprising one or more processing devices operatively coupled to one or more memory devices. The processing platform is configured to acquire a plurality of related sets of optical coherence tomography (OCT) image data for a target object volume, reconstruct space-domain OCT images for each of the plurality of sets of OCT image data, coherently average the reconstructed space-domain OCT images to suppress noise or enhance a signal-to-noise ratio, and computationally expand a spatial bandwidth of the coherent-averaged OCT image data via deconvolution.
    Type: Application
    Filed: January 28, 2022
    Publication date: February 8, 2024
    Inventors: Steven G. ADIE, Nichaluk LEARTPRAPUN
  • Publication number: 20230072425
    Abstract: Disclosed are devices and techniques based on optical coherence tomography (OCT) technology in combination with optical actuation. A system for providing optical actuation and optical sensing can include an optical coherence tomography (OCT) device that performs optical imaging of a sample based on optical interferometry from an optical sampling beam interacting with an optical sample and an optical reference beam; an OCT light source to provide an OCT imaging beam into the OCT device which splits the OCT imaging beam into the optical sampling beam and the optical reference beam; and a light source that produces an optical actuation beam that is coupled along with the optical sampling beam to be directed to the sample to actuate particles or structures in the sample so that the optical imaging captures information of the sample under the optical actuation.
    Type: Application
    Filed: February 1, 2021
    Publication date: March 9, 2023
    Inventors: Steven G ADIE, Yuechuan LIN, Nichaluk LEARTPRAPUN
  • Patent number: 10729337
    Abstract: The present application relates to systems and methods for non-invasively determining at least one of left ventricular end diastolic pressure (LVEDP) or pulmonary capillary wedge pressure (PCWP) in a subject's heart, comprising: receiving, by a computer, a plurality of signals from a plurality of non-invasive sensors that measure a plurality of physiological effects that are correlated with functioning of said subject's heart, said plurality of physiological effects including at least one signal correlated with left ventricular blood pressure and at least one signal correlated with timing of heartbeat cycles of said subject's heart; training a machine learning model on said computer using said plurality of signals for periods of time in which said plurality of signals were being generated during a heart failure event of said subject's heart; determining said LVEDP or PCWP using said machine learning model at a time subsequent to said training and subsequent to said heart failure event.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: August 4, 2020
    Assignees: The Johns Hopkins University, Boston Scientific Scimed Inc.
    Inventors: Qian Liu, Nichaluk Leartprapun, Jackline Wanjala, Soumyadipta Acharya, Andrew Bicek, Viachaslau Barodka, Umang Anand, Majd Alghatrif, David Kass, B. Westbrook Bernier, Chao-Wei Hwang, Peter Johnston, Trent Langston
  • Patent number: 10197379
    Abstract: A system for providing optical actuation and optical sensing can include an optical coherence tomography (OCT) device that performs optical imaging of a sample based on optical interferometry from an optical sampling beam interacting with an optical sample and an optical reference beam; an OCT light source to provide an OCT imaging beam into the OCT device which splits the OCT imaging beam into the optical sampling beam and the optical reference beam; and a light source that produces an optical actuation beam comprising a plurality of wavelengths that is coupled along with the optical sampling beam to be directed to the sample to actuate particles or structures in the sample so that the optical imaging captures information of the sample under the optical actuation.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 5, 2019
    Assignee: Cornell University
    Inventors: Steven Adie, Gavrielle Untracht, Nichaluk Leartprapun
  • Patent number: 10072920
    Abstract: Disclosed are devices and techniques based on optical coherence tomography (OCT) technology in combination with optical actuation. A system for providing optical actuation and optical sensing can include an optical coherence tomography (OCT) device that performs optical imaging of a sample based on optical interferometry from an optical sampling beam interacting with an optical sample and an optical reference beam; an OCT light source to provide an OCT imaging beam into the OCT device which splits the OCT imaging beam into the optical sampling beam and the optical reference beam; and a light source that produces an optical actuation beam that is coupled along with the optical sampling beam to be directed to the sample to actuate particles or structures in the sample so that the optical imaging captures information of the sample under the optical actuation.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: September 11, 2018
    Assignee: Cornell University
    Inventors: Steven Adie, Gavrielle Untracht, Nichaluk Leartprapun
  • Publication number: 20180160917
    Abstract: The present application relates to systems and methods for non-invasively determining at least one of left ventricular end diastolic pressure (LVEDP) or pulmonary capillary wedge pressure (PCWP) in a subject's heart, comprising: receiving, by a computer, a plurality of signals from a plurality of non-invasive sensors that measure a plurality of physiological effects that are correlated with functioning of said subject's heart, said plurality of physiological effects including at least one signal correlated with left ventricular blood pressure and at least one signal correlated with timing of heartbeat cycles of said subject's heart; training a machine learning model on said computer using said plurality of signals for periods of time in which said plurality of signals were being generated during a heart failure event of said subject's heart; determining said LVEDP or PCWP using said machine learning model at a time subsequent to said training and subsequent to said heart failure event.
    Type: Application
    Filed: May 5, 2016
    Publication date: June 14, 2018
    Applicants: The Johns Hopkins University, Boston Scientific Scimed Inc.
    Inventors: Qian Liu, Nichaluk Leartprapun, Jackline Wanjala, Soumyadipta Acharya, Andrew Bicek, Viachaslau Barodka, Umang Anand, Majd Alghatrif, David Kass, B. Westbrook Bernier, Chao-Wei Hwang, Peter Johnston, Trent Langston
  • Publication number: 20170241765
    Abstract: A system for providing optical actuation and optical sensing can include an optical coherence tomography (OCT) device that performs optical imaging of a sample based on optical interferometry from an optical sampling beam interacting with an optical sample and an optical reference beam; an OCT light source to provide an OCT imaging beam into the OCT device which splits the OCT imaging beam into the optical sampling beam and the optical reference beam; and a light source that produces an optical actuation beam comprising a plurality of wavelengths that is coupled along with the optical sampling beam to be directed to the sample to actuate particles or structures in the sample so that the optical imaging captures information of the sample under the optical actuation.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 24, 2017
    Inventors: Steven Adie, Gavrielle Untracht, Nichaluk Leartprapun