Patents by Inventor Nicholas S. Siegele

Nicholas S. Siegele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11452638
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: September 27, 2022
    Inventor: Nicholas S. Siegele
  • Publication number: 20190365570
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Applicant: The Trustees of Princeton University
    Inventor: Nicholas S. Siegele
  • Patent number: 10406034
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: September 10, 2019
    Assignees: Trustees of Princeton University
    Inventors: Nicholas S. Siegele, Li Deng, Syzmon Suckewer
  • Publication number: 20190038464
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Nicholas S. Siegele, Li Deng, Syzmon Suckewer
  • Patent number: 10092447
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 9, 2018
    Inventors: Nicholas S. Siegele, Li Deng, Szymon Suckewer
  • Publication number: 20160262934
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Application
    Filed: April 26, 2016
    Publication date: September 15, 2016
    Inventors: Nicholas S. Siegele, Li Deng, Szymon Suckewer
  • Patent number: 9339335
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 17, 2016
    Assignees: The Trustees of Princeton University
    Inventors: Nicholas S. Siegele, Li Deng, Szymon Suckewer
  • Publication number: 20130110096
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Application
    Filed: December 19, 2012
    Publication date: May 2, 2013
    Inventors: Nicholas S. Siegele, Li Deng, Szymon Suckewer