Patents by Inventor Nigel J. Cockroft

Nigel J. Cockroft has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020003928
    Abstract: An integrated optical microstructure includes a substrate carrying an optical waveguide and supporting a medium disposed to receive optical energy from the waveguide. The medium includes an optical re-radiator such as a phosphor, which re-radiates optical energy in response to optical energy received from the waveguide. The structure further includes a reflector disposed to redirect some of the input optical energy emanating from the medium back into the medium, to achieve spatial confinement of the input light delivered by the input waveguide. The structure can thereby increase the efficiency of the light conversion processes of re-radiating materials. An aperture in the reflector permits optical energy emitted by the re-radiator to emerge from the structure and to propagate in a preferred direction, such as toward a viewer or sensor.
    Type: Application
    Filed: December 15, 2000
    Publication date: January 10, 2002
    Applicant: Gemfire Corporation
    Inventors: William K. Bischel, David A.G. Deacon, Nigel J. Cockroft, Markus P. Hehlen, David K. Wagner, Richard B. Tompane, Simon J. Field
  • Patent number: 6208791
    Abstract: An integrated optical microstructure includes a substrate carrying an optical waveguide and supporting a medium disposed to receive optical energy from the waveguide. The medium includes an optical re-radiator such as a phosphor, which reradiates optical energy in response to optical energy received from the waveguide. The structure further includes a reflector disposed to redirect some of the input optical energy emanating from the medium back into the medium, to achieve spatial confinement of the input light delivered by the input waveguide. The structure can thereby increase the efficiency of the light conversion processes of re-radiating materials. An aperture in the reflector permits optical energy emitted by the re-radiator to emerge from the structure and to propagate in a preferred direction, such as toward a viewer or sensor.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: March 27, 2001
    Assignee: Gemfire Corporation
    Inventors: William K. Bischel, David A.G. Deacon, Nigel J. Cockroft, Markus P. Hehlen, David K. Wagner, Richard B. Tompane, Simon J. Field
  • Patent number: 5880871
    Abstract: Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: March 9, 1999
    Assignee: The Regents of The University of California
    Inventors: D. Wayne Cooke, Bryan L. Bennett, Nigel J. Cockroft
  • Patent number: 5805329
    Abstract: Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: September 8, 1998
    Assignee: The Regents of the University of California
    Inventors: D. Wayne Cooke, Bryan L. Bennett, Nigel J. Cockroft
  • Patent number: 5287217
    Abstract: An optical amplifier operating at the 1.31 .mu.m wavelength for use in such applications as telecommunications, cable television, and computer systems. An optical fiber or other waveguide device is doped with both Tm.sup.3+ and Pr.sup.3+ ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm.sup.3+ ions to the Pr.sup.3+ ions, causing the Pr.sup.3+ ions to amplify at a wavelength of 1.
    Type: Grant
    Filed: March 30, 1993
    Date of Patent: February 15, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Nigel J. Cockroft