Patents by Inventor Nikos Panayotatos

Nikos Panayotatos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080031873
    Abstract: The present invention is directed to a CHO cell expression system for high level expression of a chimeric 31.1 monoclonal antibody specific for a human carcinoma-associated protein antigen. The present invention also provides a pharmaceutical composition comprising chimeric 31.1 monoclonal antibody derived from the CHO cells of the invention for use in immunotherapy or immunodiagnosis.
    Type: Application
    Filed: December 22, 2006
    Publication date: February 7, 2008
    Inventors: Jeffry Fasick, Nikos Panayotatos, Kwong Tsang
  • Publication number: 20060269478
    Abstract: The present invention relates to complexes between (1) a target-binding moiety; (2) a cavity-forming moiety; and (3) a pharmacological compound to be delivered to a target, wherein the pharmacological compound is buried inside of the cavity-forming moiety, but not covalently bound to either the target-binding moiety or the cavity-forming moiety. The complexes of this invention may be used as to deliver a pharmacological compound to cells, tissues, organs, viruses, microorganisms or other surfaces that are characterized by an entity that binds the target-binding moiety portion of the complex. The present invention also relates to pharmaceutical compositions comprising the non-covalent complexes of this invention. The invention also relates to methods of delivering a pharmacological compound to a target in a patient. The present invention also relates to the use of the complexes of this invention for the separation of chemical entities from their chiral forms or contaminants.
    Type: Application
    Filed: August 1, 2006
    Publication date: November 30, 2006
    Inventor: Nikos Panayotatos
  • Publication number: 20030220484
    Abstract: Modified ciliary neurotrophic factors and methods for their production and therapeutic use. Also described is a method of screening for novel therapeutic proteins by determining altered electrophoretic binding properties.
    Type: Application
    Filed: March 7, 2003
    Publication date: November 27, 2003
    Inventor: Nikos Panayotatos
  • Patent number: 6602687
    Abstract: The present invention relates to nucleic acid sequences encoding ciliary neurotrophic factor (CNTF) and to the proteins, peptides, and derivatives produced therefrom. In various embodiments of the invention, the nucleic acid sequences, proteins, and peptides of the invention may be used in the treatment of a variety of neurological diseases and disorders, including Alzheimer's disease. In a specific embodiment of the invention, CNTF may be used to support the growth of spinal cord neurons, thereby providing a method of treating spinal cord damage caused by trauma infarction, infection, nutritional deficiency or toxic agents. The present invention also relates to a novel method for producing substantilly pure CNTF. The invention also relates to pharmaceutical compositions comprising effective amounts of CNTF gene products which may be used in the diagnosis and treatment of a variety of neurologial diseases and disorders.
    Type: Grant
    Filed: May 8, 1992
    Date of Patent: August 5, 2003
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Michael Sendtner, Kurt Stockli-Rippstein, Friedrich Lottspeich, Yoshihiro Arakawa, Patrick Desmond Carroll, Rudolf Georg Gotz, Georg W. Kreutzberg, Dan B. Lindholm, Piotr Masiakowski, Vivien Wong, Nancy Ip, Mark E. Furth, Nikos Panayotatos, Hans Thoenen
  • Publication number: 20030092129
    Abstract: Modified ciliary neurotrophic factors and methods for their production and therapeutic use. Also described is a method of screening for novel therapeutic proteins by determining altered electrophoretic binding properties.
    Type: Application
    Filed: August 23, 2002
    Publication date: May 15, 2003
    Inventor: Nikos Panayotatos
  • Patent number: 6440702
    Abstract: Modified ciliary neurotrophic factors and methods for their production and therapeutic use. Also described is a method of screening for novel therapeutic proteins by determining altered electrophoretic binding properties.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: August 27, 2002
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventor: Nikos Panayotatos
  • Patent number: 6410510
    Abstract: Modified ciliary neurotrophic factors and methods for their production and therapeutic use, especially in the treatment of Huntington's disease.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: June 25, 2002
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Nikos Panayotatos, Keith D. Anderson, Stanley J. Wiegand, Ronald M. Lindsay
  • Patent number: 6406710
    Abstract: The present invention relates to complexes between (1) a target-binding moiety; (2) a cavity-forming moiety; and (3) a pharmacological compound to be delivered to a target, wherein the pharmacological compound is buried inside of the cavity-forming moiety, but not covalently bound to either the target-binding moiety or the cavity-forming moiety. The complexes of thus invention may be used as to deliver a pharmacological compound to cells, tissues, organs, viruses, microorganisms or other surfaces that are characterized by an entity that binds the target-binding moiety portion of the complex. The present invention also relates to pharmaceutical compositions comprising the non-covalent complexes of this invention. The invention also relates to methods of delivering a pharmacological compound to a target in a patient. The present invention also relates to the use of the complexes of this invention for the separation of chemical entities from their chiral forms or contaminants.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: June 18, 2002
    Inventor: Nikos Panayotatos
  • Publication number: 20020004061
    Abstract: The present invention relates to complexes between (1) a target-binding moiety; (2) a cavity-forming moiety; and (3) a pharmacological compound to be delivered to a target, wherein the pharmacological compound is buried inside of the cavity-forming moiety, but not covalently bound to either the target-binding moiety or the cavity-forming moiety. The complexes of this invention may be used as to deliver a pharmacological compound to cells, tissues, organs, viruses, microorganisms or other surfaces that are characterized by an entity that binds the target-binding moiety portion of the complex. The present invention also relates to pharmaceutical compositions comprising the non-covalent complexes of this invention. The invention also relates to methods of delivering a pharmacological compound to a target in a patient. The present invention also relates to the use of the complexes of this invention for the separation of chemical entities from their chiral forms or contaminants.
    Type: Application
    Filed: August 29, 2001
    Publication date: January 10, 2002
    Inventor: Nikos Panayotatos
  • Patent number: 6303358
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: July 7, 1997
    Date of Patent: October 16, 2001
    Assignees: Regeneron Pharmaceuticals, Inc., University of Texas
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 6297035
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: October 2, 2001
    Assignees: Regeneron Pharmaceuticals, Inc., University of Texas
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 6277963
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: September 18, 1997
    Date of Patent: August 21, 2001
    Assignees: Regeneron Pharmaceuticals, Inc., University of Texas
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 5914261
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 22, 1999
    Assignees: Regeneron Pharmaceuticals, Inc., Board of Regents, University of Texas System
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 5872006
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: February 16, 1999
    Assignees: Regeneron Pharmaceuticals, Inc., Board of Regents The University of Texas System
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 5846935
    Abstract: Modified ciliary neurotrophic factors and methods for their production and therapeutic use. Also described is a method of screening for novel therapeutic proteins by determining altered electrophoretic binding properties.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: December 8, 1998
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventor: Nikos Panayotatos
  • Patent number: 5776751
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: July 7, 1998
    Assignees: Regeneron Pharmaceuticals, Inc., Board of Regents, Univ Of Texas
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 5716803
    Abstract: The present invention relates to expression of recombinant proteins by use of a bacterial host expression vector which expresses a recombinant protein under the control of a first regulatory expression element, and expresses a selectable marker under the control of a second regulatory expression element, which second element is mutated such that expression of the selectable marker is at reduced levels relative to that directed by such an unmutated expression element. Such an expression vector in a suitable bacterial host (a) allows ease of purification of the recombinant protein of interest ("the recombinant protein") since less selectable marker is present to interfere with the purification of the recombinant protein, and (b) increases the amount of recombinant protein that is produced by the bacterial host cell.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: February 10, 1998
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventor: Nikos Panayotatos
  • Patent number: 5595904
    Abstract: The present invention relates to a newly identified family of protein serine/threonine kinases which phosphorylate microtubule-associated protein 2 (MAP2). It is based, in part, on the cloning and characterization of novel MAP2 kinases designated extracellular signal-regulated kinase 1, 2, and 3 (ERK1, ERK2, ERK3) which are expressed in the central nervous system, and on the identification of another ERK family member, ERK4, with antisera. The present invention provides for recombinant nucleic acid molecules and proteins representing members of the MAP2 kinase family, and also for microorganisms, transgenic animals, and cell lines comprising recombinant MAP2 kinase molecules. In additional embodiments of the invention, the present invention provides for methods for assaying cellular factor activity, including, but not limited to, nerve growth factor activity, in which the activation of MAP2 kinase serves as an indicator of cellular factor activity.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: January 21, 1997
    Assignees: Board of Regents, Univ. of Texas, Regeneron Pharmaceuticals, Inc.
    Inventors: Teri G. Boulton, Melanie H. Cobb, George D. Yancopoulos, Steven Nye, Nikos Panayotatos
  • Patent number: 5389529
    Abstract: Signal sequences based on LamB have been constructed. These signal sequences facilitate both the synthesis and secretion of neurotrophins in E. coli.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: February 14, 1995
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Nikos Panayotatos, James P. Fandl
  • Patent number: 5349056
    Abstract: Modified ciliary neurotrophic factors and methods for their production and therapeutic use. Also described is a method of screening for novel therapeutic proteins by determining altered electrophoretic binding properties.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: September 20, 1994
    Assignee: Regeneron Pharmaceuticals
    Inventor: Nikos Panayotatos