Patents by Inventor Niloy Mukherjee

Niloy Mukherjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11792998
    Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: October 17, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11785782
    Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: October 10, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11769790
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230298905
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230301113
    Abstract: A device structure comprises a first conductive interconnect, an electrode structure on the first conductive interconnect, an etch stop layer laterally surrounding the electrode structure; a plurality of memory devices above the electrode structure, where individual ones of the plurality of memory devices comprise a dielectric layer comprising a perovskite material. The device structure further comprises a plate electrode coupled between the plurality of memory devices and the electrode structure, where the plate electrode is in direct contact with a respective lower most conductive layer of the individual ones of the plurality of memory devices. The device structure further includes an insulative hydrogen barrier layer on at least a sidewall of the individual ones of the plurality of memory devices; and a plurality of via electrodes, wherein individual ones of the plurality of via electrodes are on a respective one of the individual ones of the plurality of memory devices.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Rafael Rios, Amrita Mathuriya, Niloy Mukherjee, Mauricio Manfrini, Rajeev Kumar Dokania, Somilkumar J. Rathi, Sasikanth Manipatruni
  • Patent number: 11765908
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11765909
    Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11741428
    Abstract: A method for monetizing ferroelectric process development is described. In at least one embodiment, the method comprises procuring a target material based on a model driven selection which is based on charge, mass and magnetic moment, and/or mass of the atomic constituents of the target material. The method further comprises applying the target material to a fabrication process to build a ferroelectric device. The method further comprises generating a notification indicative of procurement of the target material and application of the target material. The method further comprises electronically transmitting the notification to a customer, wherein the notification includes an invoice having a line item associated with a cost of the procuring of the target material and application of the target material.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya
  • Patent number: 11744081
    Abstract: Described are ferroelectric device film stacks which include a templating or texturing layer or material deposited below a ferroelectric layer, to enable a crystal lattice of the subsequently deposited ferroelectric layer to template off this templating layer and provide a large degree of preferential orientation despite the lack of epitaxial substrates.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Ramamoorthy Ramesh, Sasikanth Manipatruni, James Clarkson, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Jason Y. Wu
  • Publication number: 20230262074
    Abstract: Attack continuations are detected by providing a central service configured to construct an execution graph based on activities monitored by a plurality of agents deployed on respective systems. A query initiated from a first one of the systems is identified by the central service, where the first system comprises a cloud-based instance and where the query comprises a request to a server for credentials associated with the cloud-based instance. An indication is received by the central service that the credentials were used to access a cloud-based service. A connection is formed between the first system and the cloud-based service in a global execution trail in the execution graph.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 17, 2023
    Inventors: Xiaofei Guo, Muhaimin Ahsan, Eun-Gyu Kim, Niloy Mukherjee
  • Publication number: 20230246064
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230246062
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230246063
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11716858
    Abstract: Described are ferroelectric device film stacks which include a templating or texturing layer or material deposited below a ferroelectric layer, to enable a crystal lattice of the subsequently deposited ferroelectric layer to template off this templating layer and provide a large degree of preferential orientation despite the lack of epitaxial substrates.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 1, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Ramamoorthy Ramesh, Sasikanth Manipatruni, James Clarkson, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Jason Y. Wu
  • Publication number: 20230215725
    Abstract: The disclosed technology generally relates to forming a thin film comprising titanium nitride (TiN), and more particularly to forming by a cyclical vapor deposition process the thin film comprising (TiN).
    Type: Application
    Filed: September 30, 2022
    Publication date: July 6, 2023
    Inventors: Sung-Hoon Jung, Niloy Mukherjee, Yoshikazu Okuyama, Nariman Naghibolashrafi, Bunsen B. Nie, Hae Young Kim, Somilkumar J. Rathi
  • Publication number: 20230187476
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11659714
    Abstract: Described are ferroelectric device film stacks which include a templating or texturing layer or material deposited below a ferroelectric layer, to enable a crystal lattice of the subsequently deposited ferroelectric layer to template off this templating layer and provide a large degree of preferential orientation despite the lack of epitaxial substrates.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: May 23, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Ramamoorthy Ramesh, Sasikanth Manipatruni, James Clarkson, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Jason Y. Wu
  • Publication number: 20230128366
    Abstract: The disclosed technology relates generally to semiconductor processing and more particularly to liquid precursor injection apparatus and methods for depositing thin films. A method of injecting a liquid precursor into a thin film deposition chamber comprises delivering a vaporized liquid precursor into the thin film deposition chamber by atomizing the liquid precursor into atomized precursor droplets using a liquid injection unit and vaporizing the atomized precursor droplets into the vaporized liquid precursor in a vaporization chamber.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 27, 2023
    Inventors: Alex Finkelman, Niloy Mukherjee, Miguel Saldana
  • Publication number: 20230076825
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 9, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230070073
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 9, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni