Patents by Inventor Nitin Chawla

Nitin Chawla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210072894
    Abstract: A memory array arranged as a plurality of memory cells. The memory cells are configured to operate at a determined voltage. A memory management circuitry coupled to the plurality of memory cells tags a first set of the plurality of memory cells as low-voltage cells and tags a second set of the plurality of memory cells as high-voltage cells. A power source provides a low voltage to the first set of memory cells and provides a high voltage to the second set of memory cells based on the tags.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 11, 2021
    Inventors: Nitin CHAWLA, Giuseppe DESOLI, Anuj GROVER, Thomas BOESCH, Surinder Pal SINGH, Manuj AYODHYAWASI
  • Publication number: 20200411089
    Abstract: A memory management circuit stores information indicative of reliability-types of regions of a memory array. The memory management circuitry responds to a request to allocate memory in the memory array to a process by determining a request type associated with the request to allocate memory. Memory of the memory array is allocated to the process based on the request type associated with the request to allocate memory and the stored information indicative of reliability-types of regions of the memory array. The memory array may be a shared memory array. The memory array may be organized into rows and columns, and the regions of the memory array may be the rows of the memory array.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 31, 2020
    Inventors: Nitin CHAWLA, Tanmoy ROY, Anuj GROVER
  • Publication number: 20200388330
    Abstract: An in-memory compute (IMC) device includes a compute array having a first plurality of cells. The compute array is arranged as a plurality of rows of cells intersecting a plurality of columns of cells. Each cell of the first plurality of cells is identifiable by its corresponding row and column. The IMC device also includes a plurality of computation engines and a plurality of bias engines. Each computation engine is respectively formed in a different one of a second plurality of cells, wherein the second plurality of cells is formed from cells of the first plurality. Each computation engine is formed at a respective row and column intersection. Each bias engine of the plurality of bias engines is arranged to computationally combine an output from at least one of the plurality of computation engines with a respective bias value.
    Type: Application
    Filed: May 22, 2020
    Publication date: December 10, 2020
    Inventors: Anuj GROVER, Tanmoy ROY, Nitin CHAWLA
  • Publication number: 20200387352
    Abstract: A memory array arranged in multiple columns and rows. Computation circuits that each calculate a computation value from cell values in a corresponding column. A column multiplexer cycles through multiple data lines that each corresponds to a computation circuit. Cluster cycle management circuitry determines a number of multiplexer cycles based on a number of columns storing data of a compute cluster. A sensing circuit obtains the computation values from the computation circuits via the column multiplexer as the column multiplexer cycles through the data lines. The sensing circuit combines the obtained computation values over the determined number of multiplexer cycles. A first clock may initiate the multiplexer to cycle through its data lines for the determined number of multiplexer cycles, and a second clock may initiate each individual cycle. The multiplexer or additional circuitry may be utilized to modify the order in which data is written to the columns.
    Type: Application
    Filed: June 2, 2020
    Publication date: December 10, 2020
    Inventors: Nitin CHAWLA, Tanmoy ROY, Anuj GROVER, Giuseppe DESOLI
  • Publication number: 20180189229
    Abstract: Embodiments are directed towards a system on chip (SoC) that implements a deep convolutional network heterogeneous architecture. The SoC includes a system bus, a plurality of addressable memory arrays coupled to the system bus, at least one applications processor core coupled to the system bus, and a configurable accelerator framework coupled to the system bus. The configurable accelerator framework is an image and deep convolutional neural network (DCNN) co-processing system. The SoC also includes a plurality of digital signal processors (DSPs) coupled to the system bus, wherein the plurality of DSPs coordinate functionality with the configurable accelerator framework to execute the DCNN.
    Type: Application
    Filed: February 2, 2017
    Publication date: July 5, 2018
    Inventors: Giuseppe DESOLI, Thomas BOESCH, Nitin CHAWLA, Surinder Pal SINGH, Elio GUIDETTI, Fabio Giuseppe DE AMBROGGI, Tommaso MAJO, Paolo Sergio ZAMBOTTI
  • Patent number: 9021324
    Abstract: An arrangement including at least one path, at least one replica path, the at least one replica path corresponding to a respective path, a controller configured to use control information derived from the at least one replica path, at least one of the paths comprising a monitoring unit configured to provide monitor information to the controller, the controller being configured to modify the control information in dependence on the monitor information.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: April 28, 2015
    Assignee: STMicroelectronics International N.V.
    Inventors: Nitin Chawla, Kallol Chatterjee, Chittoor Parthasarathy
  • Patent number: 8994416
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. This application presents a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 31, 2015
    Assignees: STMicroelectronics International N.V., STMicroelectronics SA
    Inventors: Chittoor Parthasarathy, Nitin Chawla, Kallol Chatterjee, Pascal Urard
  • Publication number: 20140035644
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. This application presents a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Application
    Filed: October 3, 2013
    Publication date: February 6, 2014
    Applicants: STMicroelectronics SA, STMicroelectronics International N.V.
    Inventors: Chittoor PARTHASARATHY, Nitin CHAWLA, Kallol CHATTERJEE, Pascal URARD
  • Patent number: 8552765
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. We present a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 8, 2013
    Assignees: STMicroelectronics International N.V., STMicroelectronics SA
    Inventors: Chittoor Parthasarathy, Nitin Chawla, Kallol Chatterjee, Pascal Urard
  • Patent number: 8269545
    Abstract: A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: September 18, 2012
    Assignee: STMicroelectronics International N.V.
    Inventors: Nitin Chawla, Chittoor Parthasarathy, Kallol Chatterjee, Promod Kumar
  • Publication number: 20120176173
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. We present a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Application
    Filed: June 30, 2011
    Publication date: July 12, 2012
    Applicants: STMICROELECTRONICS SA, STMicroelectronics Pvt Ltd.
    Inventors: Chittoor PARTHASARATHY, Nitin Chawla, Kallol Chatterjee, Pascal Urard
  • Publication number: 20120158339
    Abstract: An arrangement including at least one path, at least one replica path, the at least one replica path corresponding to a respective path, a controller configured to use control information derived from the at least one replica path, at least one of the paths comprising a monitoring unit configured to provide monitor information to the controller, the controller being configured to modify the control information in dependence on the monitor information.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: STMicroelectronics Pvt. Ltd.
    Inventors: Nitin Chawla, Kallol Chatterjee, Chittoor Parthasarathy
  • Patent number: 8154335
    Abstract: A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: April 10, 2012
    Assignee: STMicroelectronics Pvt. Ltd.
    Inventors: Nitin Chawla, Chittoor Parthasarathy, Kallol Chatterjee, Promod Kumar
  • Publication number: 20120044005
    Abstract: A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
    Type: Application
    Filed: October 31, 2011
    Publication date: February 23, 2012
    Applicant: STMicroelectronics Pvt. Ltd.
    Inventors: Nitin Chawla, Chittoor Parthasarathy, Kallol Chatterjee, Promod Kumar
  • Patent number: 8037336
    Abstract: The present disclosure provides a spread spectrum clock generation system having a digitally controlled phase locked loop (PLL) and a digital frequency profile generator to create a near optimal frequency modulation profile for the purpose of achieving spectral flatness in the output frequency modulated clock. The circuit is combined with a multilevel error feedback noise shaping structure that provides the required noise transfer function for the quantization noise but maintains a unity gain all pass signal transfer function. This arrangement offers minimal degradation of the in-band signal-to-noise ratio (SNR) at the cost of higher out-of-band noise.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: October 11, 2011
    Assignee: STMicroelectronics PVT, Ltd.
    Inventor: Nitin Chawla
  • Patent number: 7917569
    Abstract: A device for implementing a sum-of-products expression includes a first set of 2-input Shift-and-Add (2SAD) blocks receiving a coefficient set/complex sum-of-products expression for generating a first set of partially optimized expression terms by applying recursive optimization therein, a second set of 1-input Shift-and-Add (1SAD) blocks receiving response from the 2SAD blocks for generating a second set of partially optimized expression terms by applying vertical optimization therein, a third set of 2SAD blocks receiving recursively and vertically optimized response from the first set of 2SAD block and the second set of 1SAD blocks for generating a third set of partially optimized expression terms by applying horizontal optimization therein, a fourth set of 2SAD blocks receiving response from the blocks for generating a fourth set of partially optimized expression terms by applying decomposition and factorization, and a fifth set of 2SAD blocks receiving response from the fourth set of 2SAD blocks, for gene
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: March 29, 2011
    Assignee: STMicroelectronics Pvt. Ltd.
    Inventors: Aditya Bhuvanagiri, Rakesh Malik, Nitin Chawla
  • Publication number: 20110068858
    Abstract: A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicant: STMicroelectronics Pvt. Ltd.
    Inventors: Nitin Chawla, Chittoor Parthasarathy, Kallol Chatterjee, Promod Kumar
  • Patent number: 7698355
    Abstract: A minimal area integrated polyphase interpolation filter uses a symmetry of coefficients for a channel of input data. The filter includes an input interface block for synchronizing the input signal to a first internal clock signal; a memory block for providing multiple delayed output signals; a multiplexer input interface block for outputting a selected plurality of signals for generating mirror image coefficient sets in response to a second set of internal control signals, a coefficient block for generating mirror image and/or symmetric coefficient sets, and to output a plurality of filtered signals, an output multiplexer block for performing selection, gain control and data width control on said plurality of filtered signals, an output register block synchronizing the filtered signals, and a control block generating clock signals for realization of the filter and to delay between two channels to access a coefficient set, thereby minimizing hardware in the filter.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: April 13, 2010
    Assignee: STMicroelectronics Pvt. Ltd.
    Inventors: Aditya Bhuvanagiri, Harvinder Singh, Rakesh Malik, Nitin Chawla
  • Publication number: 20080129351
    Abstract: The present disclosure provides a spread spectrum clock generation system having a digitally controlled phase locked loop (PLL) and a digital frequency profile generator to create a near optimal frequency modulation profile for the purpose of achieving spectral flatness in the output frequency modulated clock. The circuit is combined with a multilevel error feedback noise shaping structure that provides the required noise transfer function for the quantization noise but maintains a unity gain all pass signal transfer function. This arrangement offers minimal degradation of the in-band signal-to-noise ratio (SNR) at the cost of higher out-of-band noise.
    Type: Application
    Filed: May 15, 2007
    Publication date: June 5, 2008
    Applicant: STMicroelectronics Pvt. Ltd.
    Inventor: Nitin Chawla
  • Publication number: 20060153321
    Abstract: A device for implementing a sum-of-products expression includes a first set of 2-input Shift-and-Add (2SAD) blocks receiving a coefficient set/complex sum-of-products expression for generating a first set of partially optimized expression terms by applying recursive optimization therein, a second set of 1-input Shift-and-Add (1SAD) blocks receiving response from the 2SAD blocks for generating a second set of partially optimized expression terms by applying vertical optimization therein, a third set of 2SAD blocks receiving recursively and vertically optimized response from the first set of 2SAD block and the second set of 1SAD blocks for generating a third set of partially optimized expression terms by applying horizontal optimization therein, a fourth set of 2SAD blocks receiving response from the blocks for generating a fourth set of partially optimized expression terms by applying decomposition and factorization, and a fifth set of 2SAD blocks receiving response from the fourth set of 2SAD blocks, for gene
    Type: Application
    Filed: October 20, 2005
    Publication date: July 13, 2006
    Applicant: STMicroelectronics Pvt.Ltd.
    Inventors: Aditya Bhuvanagiri, Rakesh Malik, Nitin Chawla