Patents by Inventor Nobuharu Kimura

Nobuharu Kimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8795514
    Abstract: The present invention relates to a regenerated hydrotreatment catalyst regenerated from a hydrotreatment catalyst for treating a petroleum fraction, the hydrotreatment catalyst being prepared by supporting molybdenum and at least one species selected from metals of Groups 8 to 10 of the Periodic Table on an inorganic carrier containing an aluminum oxide, wherein a residual carbon content is in the range of 0.15 mass % to 3.0 mass %, a peak intensity of a molybdenum composite metal oxide with respect to an intensity of a base peak is in the range of 0.60 to 1.10 in an X-Ray diffraction spectrum, and a peak intensity of a Mo—S bond derived from a residual sulfur peak with respect to an intensity of a base peak is in the range of 0.10 to 0.60 in a radial distribution curve obtained from an extended X-ray absorption fine structure spectrum of an X-ray absorption fine structure analysis.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: August 5, 2014
    Assignees: JX Nippon Oil & Energy Corporation, Japan Petroleum Energy Center
    Inventors: Nobuharu Kimura, Yoshimu Iwanami, Wataru Sahara, Souichirou Konno
  • Patent number: 8722558
    Abstract: Provided is a process for producing a regenerated hydrotreating catalyst by regenerating a spent hydrotreating catalyst in a prescribed temperature range, wherein the prescribed temperature range is a temperature range of T1?30° C. or more and T2+30° C. or less, as determined by subjecting the spent hydrotreating catalyst to a differential thermal analysis, converting a differential heat in a measuring temperature range of 100° C. or more and 600° C. or less to a difference in electromotive force, differentiating the converted value twice by temperature to provide a smallest extreme value and a second smallest extreme value, and representing a temperature corresponding to the extreme value on the lower-temperature side as T1 and a temperature corresponding to the extreme value on the higher-temperature side as T2.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 13, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Souichirou Konno, Yoshimu Iwanami, Wataru Sahara, Nobuharu Kimura
  • Publication number: 20120298557
    Abstract: The present invention relates to a regenerated hydrotreatment catalyst regenerated from a hydrotreatment catalyst for treating a petroleum fraction, the hydrotreatment catalyst being prepared by supporting molybdenum and at least one species selected from metals of Groups 8 to 10 of the Periodic Table on an inorganic carrier containing an aluminum oxide, wherein a residual carbon content is in the range of 0.15 mass % to 3.0 mass %, a peak intensity of a molybdenum composite metal oxide with respect to an intensity of a base peak is in the range of 0.60 to 1.10 in an X-Ray diffraction spectrum, and a peak intensity of a Mo—S bond derived from a residual sulfur peak with respect to an intensity of a base peak is in the range of 0.10 to 0.60 in a radial distribution curve obtained from an extended X-ray absorption fine structure spectrum of an X-ray absorption fine structure analysis.
    Type: Application
    Filed: November 8, 2010
    Publication date: November 29, 2012
    Applicants: JAPAN PETROLEUM ENERGY CENTER, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Nobuharu Kimura, Yoshimu Iwanami, Wataru Sahara, Souichirou Konno
  • Publication number: 20120160738
    Abstract: Provided is a process for producing a regenerated hydrotreating catalyst by regenerating a spent hydrotreating catalyst in a prescribed temperature range, wherein the prescribed temperature range is a temperature range of T1?30° C. or more and T2+30° C. or less, as determined by subjecting the spent hydrotreating catalyst to a differential thermal analysis, converting a differential heat in a measuring temperature range of 100° C. or more and 600° C. or less to a difference in electromotive force, differentiating the converted value twice by temperature to provide a smallest extreme value and a second smallest extreme value, and representing a temperature corresponding to the extreme value on the lower-temperature side as T1 and a temperature corresponding to the extreme value on the higher-temperature side as T2.
    Type: Application
    Filed: June 18, 2010
    Publication date: June 28, 2012
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Souichirou Konno, Yoshimu Iwanami, Wataru Sahara, Nobuharu Kimura