Patents by Inventor Nobuhiro Kumada

Nobuhiro Kumada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9660174
    Abstract: Provided is a lead-free piezoelectric material having a high Curie temperature, a satisfactory mechanical quality factor, and a satisfactory Young's modulus, and a piezoelectric element and a multilayered piezoelectric element each using the piezoelectric material. The piezoelectric material contains 0.04 mol % or more to 2.00 mol % or less of Cu with respect to 1 mol of a perovskite-type metal oxide represented by the following general formula: (KvBiwBa1-v-w)1-yNax(NbyTi1-y)O3 where relationships of 0<v?0.39, 0<w?0.39, 0.9?w/v?1.1, 0.80?x?0.95, and 0.85?y?0.95 are satisfied.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: May 23, 2017
    Assignees: CANON KABUSHIKI KAISHA, UNIVERSITY OF YAMANASHI
    Inventors: Shunsuke Murakami, Takayuki Watanabe, Miki Ueda, Nobuhiro Kumada
  • Patent number: 9543501
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: January 10, 2017
    Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, Sophia University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Patent number: 9318689
    Abstract: Provided are methods of manufacturing an oriented ceramics containing sodium niobate and a raw material thereof. Specifically, provided is a sodium niobate powder, including cuboidal sodium niobate particles having an average side length of 0.1 ?m or more to 100 ?m or less, at least one face of the cuboid including a (100) plane in pseudo-cubic notation, in which the sodium niobate powder has a perovskite single-phase structure.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 19, 2016
    Assignees: CANON KABUSHIKI KAISHA, UNIVERSITY OF YAMANASHI
    Inventors: Takayuki Watanabe, Hiroshi Saito, Jumpei Hayashi, Nobuhiro Kumada
  • Patent number: 9306149
    Abstract: Provided is a piezoelectric material that achieves both high piezoelectric performance and high Curie temperature. In addition, provided are a piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust removing device, which use the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide that is expressed by the following general formula (1): xBaTiO3-yBiFeO3-zBi(M0.5Ti0.5)O3 (1), where M represents at least one type of element selected from the group consisting of Mg and Ni, x satisfies 0.25?x?0.75, y satisfies 0.15?y?0.70, z satisfies 0.05?z?0.60, and x+y+z=1 is satisfied.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 5, 2016
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Jumpei Hayashi, Hisato Yabuta, Makoto Kubota, Mikio Shimada, Satoshi Wada, Ichiro Fujii, Ryuta Mitsui, Nobuhiro Kumada
  • Patent number: 9196819
    Abstract: Provided is an oriented piezoelectric ceramic of satisfactory piezoelectricity, which includes a metal oxide represented by (1?x)NaNbO3-xBaTiO3. Also provided are a piezoelectric element using the oriented piezoelectric ceramic which includes the metal oxide represented by (1?x)NaNbO3-xBaTiO3, and a liquid discharge head, an ultrasonic motor, and a dust removing device which use the piezoelectric element. An oriented piezoelectric ceramic includes as a main component a metal oxide represented by the following general formula (1), in which the oriented piezoelectric ceramic has a lead content and a potassium content that are each 1,000 ppm or less: (1?x)NaNbO3-xBaTiO3 . . . General formula (1), where a relationship of 0<x<0.3 is satisfied.
    Type: Grant
    Filed: May 28, 2012
    Date of Patent: November 24, 2015
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takayuki Watanabe, Shunsuke Murakami, Nobuhiro Kumada
  • Patent number: 9147830
    Abstract: Provided is an oriented piezoelectric ceramic of satisfactory piezoelectricity, which includes a metal oxide represented by (1?x)NaNbO3-xBaTiO3. Also provided are a piezoelectric element using the oriented piezoelectric ceramic which includes the metal oxide represented by (1?x)NaNbO3-xBaTiO3, and a liquid discharge head, an ultrasonic motor, and a dust removing device which use the piezoelectric element. An oriented piezoelectric ceramic includes as a main component a metal oxide represented by the following general formula (1), in which the oriented piezoelectric ceramic has a lead content and a potassium content that are each 1,000 ppm or less: (1?x)NaNbO3-xBaTiO3 . . . General formula (1), where a relationship of 0<x<0.3 is satisfied.
    Type: Grant
    Filed: May 28, 2012
    Date of Patent: September 29, 2015
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takayuki Watanabe, Shunsuke Murakami, Nobuhiro Kumada
  • Patent number: 9082976
    Abstract: Provided is a piezoelectric ceramics that can achieve both high piezoelectric performance and a high Curie temperature. Also provided are a piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust removing device, which use the piezoelectric ceramics. The piezoelectric ceramics include a perovskite-type metal oxide expressed by a general formula (1): xBaTiO3-yBiFeO3-zBi(M0.5Ti0.5)O3, where M represents at least one type of element selected from the group consisting of Mg and Ni, x satisfies 0.40?x?0.80, y satisfies 0?y?0.30, z satisfies 0.05?z?0.60, and x+y+z=1 is satisfied, and are oriented in a (111) plane in a pseudocubic expression.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 14, 2015
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Makoto Kubota, Takayuki Watanabe, Hisato Yabuta, Jumpei Hayashi, Nobuhiro Kumada, Satoshi Wada
  • Publication number: 20150194594
    Abstract: Provided is a lead-free piezoelectric material having a high Curie temperature, a satisfactory mechanical quality factor, and a satisfactory Young's modulus, and a piezoelectric element and a multilayered piezoelectric element each using the piezoelectric material. The piezoelectric material contains 0.04 mol % or more to 2.00 mol % or less of Cu with respect to 1 mol of a perovskite-type metal oxide represented by the following general formula: (KvBiwBa1-v-w)1-yNax(NbyTi1-y)O3 where relationships of 0<v?0.39, 0<w?0.39, 0.9?w/v?1.1, 0.80?x?0.95, and 0.85?y?0.95 are satisfied.
    Type: Application
    Filed: August 21, 2013
    Publication date: July 9, 2015
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shunsuke Murakami, Takayuki Watanabe, Miki Ueda, Nobuhiro Kumada
  • Patent number: 8955947
    Abstract: Provided is a piezoelectric material which has satisfactory insulation property and piezoelectric property and which does not contain lead and potassium. The piezoelectric material includes a perovskite-type metal oxide that is represented by the following general formula (1): (NaxBa1-y)(NbyTi1-y)O3??General formula (1) where relationships of 0.80?x?0.95 and 0.85?y?0.95 are satisfied, and y×0.05 mol % or more to y×2 mol % or less of copper with respect to 1 mol of the perovskite-type metal oxide.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 17, 2015
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takayuki Watanabe, Shunsuke Murakami, Nobuhiro Kumada
  • Publication number: 20140152144
    Abstract: Provided is an oriented piezoelectric ceramic of satisfactory piezoelectricity, which includes a metal oxide represented by (1?x)NaNbO3-xBaTiO3. Also provided are a piezoelectric element using the oriented piezoelectric ceramic which includes the metal oxide represented by (1?x)NaNbO3-xBaTiO3, and a liquid discharge head, an ultrasonic motor, and a dust removing device which use the piezoelectric element. An oriented piezoelectric ceramic includes as a main component a metal oxide represented by the following general formula (1), in which the oriented piezoelectric ceramic has a lead content and a potassium content that are each 1,000 ppm or less: (1?x)NaNbO3-xBaTiO3 . . . General formula (1), where a relationship of 0<x<0.3 is satisfied.
    Type: Application
    Filed: May 28, 2012
    Publication date: June 5, 2014
    Applicants: UNIVERSITY OF YAMANASHI, CANON KABUSHIKI KAISHA
    Inventors: Takayuki Watanabe, Shunsuke Murakami, Nobuhiro Kumada
  • Publication number: 20140125204
    Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1-x)·Ca1.4Ba3.6Nb10O30-x·Ba4Bi0.67Nb10O30 (0.30?x?0.95).
    Type: Application
    Filed: January 8, 2014
    Publication date: May 8, 2014
    Applicants: UNIVERSITY OF YAMANASHI, CANON KABUSHIKI KAISHA
    Inventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
  • Patent number: 8702885
    Abstract: A method of manufacturing ceramics includes: placing, on a base material, a first slurry in which a metal oxide powder is dispersed; applying a magnetic field to the first slurry to solidify the first slurry, thereby forming an under coat layer made of a first compact; placing, on the under coat layer, a second slurry containing a metal oxide powder constituting the ceramics; applying a magnetic field to the second slurry to solidify the second slurry, thereby forming a second compact to obtain a laminated body of the second compact and the under coat layer; and obtaining the ceramics made of the second compact by removing the under coat layer from the laminated body of the second compact and the under coat layer and then sintering the second compact, or sintering the laminated body of the second compact and the under coat layer and then removing the under coat layer.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 22, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takanori Matsuda, Tatsuo Furuta, Takayuki Watanabe, Jumpei Hayashi, Nobuhiro Kumada
  • Publication number: 20140106170
    Abstract: Provided are methods of manufacturing an oriented ceramics containing sodium niobate and a raw material thereof. Specifically, provided is a sodium niobate powder, including cuboidal sodium niobate particles having an average side length of 0.1 ?m or more to 100 ?m or less, at least one face of the cuboid including a (100) plane in pseudo-cubic notation, in which the sodium niobate powder has a perovskite single-phase structure.
    Type: Application
    Filed: May 17, 2012
    Publication date: April 17, 2014
    Applicants: UNIVERSITY OF YAMANASHI, CANON KABUSHIKI KAISHA
    Inventors: Takayuki Watanabe, Hiroshi Saito, Jumpei Hayashi, Nobuhiro Kumada
  • Patent number: 8698380
    Abstract: Provided is a manufacturing method for preferentially-oriented oxide ceramics having a high degree of crystal orientation. The manufacturing method includes: obtaining slurry containing an oxide crystal B having magnetic anisotropy; applying a magnetic field to the oxide crystal B, and obtaining a compact of the oxide crystal B; and subjecting the compact to oxidation treatment to obtain preferentially-oriented oxide ceramics including a compact of an oxide crystal C having a crystal system that is different from a crystal system of one of a part and a whole of the oxide crystal B. By (1) reacting raw materials, (2) reducing the oxide crystal A, or (3) keeping the oxide crystal A at high temperature and quenching the oxide crystal A, the oxide crystal B is obtained to be used in the slurry.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 15, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takayuki Watanabe, Makoto Kubota, Jumpei Hayashi, Nobuhiro Kumada, Tomoaki Mochiduki
  • Patent number: 8663493
    Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x).Ca1.4Ba3.6Nb10O30?x.Ba4Bi0.67Nb10O30 (0.30?x?0.95).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
  • Patent number: 8632723
    Abstract: Provided is a manufacturing method for preferentially-oriented oxide ceramics having a high degree of crystal orientation. The manufacturing method includes: obtaining slurry containing an oxide crystal B having magnetic anisotropy; applying a magnetic field to the oxide crystal B, and obtaining a compact of the oxide crystal B; and subjecting the compact to oxidation treatment to obtain preferentially-oriented oxide ceramics including a compact of an oxide crystal C having a crystal system that is different from a crystal system of one of a part and a whole of the oxide crystal B. By (1) reacting raw materials, (2) reducing the oxide crystal A, or (3) keeping the oxide crystal A at high temperature and quenching the oxide crystal A, the oxide crystal B is obtained to be used in the slurry.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: January 21, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takayuki Watanabe, Makoto Kubota, Jumpei Hayashi, Nobuhiro Kumada, Tomoaki Mochiduki
  • Publication number: 20130335488
    Abstract: Provided is a piezoelectric material which has satisfactory insulation property and piezoelectric property and which does not contain lead and potassium. The piezoelectric material includes a perovskite-type metal oxide that is represented by the following general formula (1): (NaxBa1-y)(NbyTi1-y)O3??General formula (1) where relationships of 0.80?x?0.95 and 0.85?y?0.95 are satisfied, and y×0.05 mol % or more to y×2 mol % or less of copper with respect to 1 mol of the perovskite-type metal oxide.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 19, 2013
    Applicants: UNIVERSITY OF YAMANASHI, CANON KABUSHIKI KAISHA
    Inventors: Takayuki Watanabe, Shunsuke Murakami, Nobuhiro Kumada
  • Publication number: 20130330541
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Application
    Filed: August 5, 2013
    Publication date: December 12, 2013
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION, UNIVERSITY OF YAMANASHI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCES AND TECHNOLOGY, SOPHIA UNIVERSITY
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20130270965
    Abstract: Provided is a piezoelectric material that achieves both high piezoelectric performance and high Curie temperature. In addition, provided are a piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust removing device, which use the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide that is expressed by the following general formula (1): xBaTiO3-yBiFeO3-zBi(M0.5Ti0.5)O3 (1), where M represents at least one type of element selected from the group consisting of Mg and Ni, x satisfies 0.25?x?0.75, y satisfies 0.15?y?0.70, z satisfies 0.05?z?0.60, and x+y+z=1 is satisfied.
    Type: Application
    Filed: December 22, 2011
    Publication date: October 17, 2013
    Applicants: UNIVERSITY OF YAMANASHI, CANON KABUSHIKI KAISHA
    Inventors: Jumpei Hayashi, Hisato Yabuta, Makoto Kubota, Mikio Shimada, Satoshi Wada, Ichiro Fujii, Ryuta Mitsui, Nobuhiro Kumada
  • Patent number: 8547001
    Abstract: To provide a piezoelectric ceramic containing BiFeO3 having a {110} plane orientation in a pseudo-cubic form, which is suited for the domain engineering, the piezoelectric ceramic includes a perovskite-type metal oxide represented by the following general formula (1), and has a {110} plane orientation in a pseudo-cubic form: xBiFeO3-(1?x)ABO3??General Formula (1) where A and B each represent one kind or more of metal ions; A represents a metal ion having a valence of 1, 2 or 3; and B represents a metal ion having a valence of 3, 4, or 5, provided that x is within a range of 0.3?x?1.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 1, 2013
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Hiroshi Saito, Takanori Matsuda, Kenji Takashima, Nobuhiro Kumada