Patents by Inventor Nobuhisa Yamaguchi
Nobuhisa Yamaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230110224Abstract: A coil unit for a contactless power supply system includes a plurality of coils for electric power transfer, and a magnetic flux reduction structure. The plurality of coils include a first coil and a second coil adjacent to the first coil in a predetermined direction. The magnetic flux reduction structure reduces, during electric power transfer using the first coil, magnetic flux by which the first coil causes an induced voltage or induced current to be generated in the second coil.Type: ApplicationFiled: December 9, 2022Publication date: April 13, 2023Applicant: DENSO CORPORATIONInventors: Mitsuru SHIBANUMA, Masaya TAKAHASHI, Eisuke TAKAHASHI, Nobuhisa YAMAGUCHI
-
Publication number: 20220320909Abstract: In a wireless power transfer apparatus, a characteristic adjuster has a frequency characteristic that causes, in a power transfer mode from at least one power transmission unit to a power receiving apparatus, a resonant power transmission circuit to have a resonance frequency that substantially matches an operating frequency. The reactance of a power transmission coil has a reference value in the power transfer mode. The frequency characteristic of the characteristic adjuster causes, in a power non-transfer mode from the at least one power transmission unit to the power receiving apparatus, a reactance of a power transmission coil to become an adjusted value that is higher than the reference value.Type: ApplicationFiled: June 17, 2022Publication date: October 6, 2022Applicant: DENSO CORPORATIONInventors: Yuusei NAKAYASHIKI, Masaya TAKAHASHI, Eisuke TAKAHASHI, Nobuhisa YAMAGUCHI
-
Publication number: 20220203848Abstract: A vehicle power supply system is configured to supply power to a vehicle from a power supply apparatus laid on a power supply lane of a vehicle travel path, the power supply apparatus includes a plurality of power supply segments laid in a preset interval along the power supply lane, and a controller configured to control the plurality of power supply segments. The controller is configured to estimate timing of the vehicle reaching a next power supply segment that supplies power next after a present power supply segment that is supplying power, from at least a vehicle velocity derived from a change in position of the vehicle, and cause the next power supply segment to start power supply at the timing estimated.Type: ApplicationFiled: March 18, 2022Publication date: June 30, 2022Applicant: DENSO CORPORATIONInventors: Kouji MAZAKI, Nobuhisa YAMAGUCHI, Mitsuru SHIBANUMA
-
Publication number: 20220149666Abstract: A dynamic wireless power transfer system includes a power transmission coil, a power transmission circuit, a power reception coil, a power reception circuit, and a relay circuit. The power transmission coil is provided in a road. The power transmission circuit supplies electric power to the power transmission coil. The power reception coil is provided in a vehicle. The power reception circuit is connected to the power reception coil. The relay circuit transfers electric power between the power transmission coil and the power reception coil in a contactless manner.Type: ApplicationFiled: January 26, 2022Publication date: May 12, 2022Applicants: DENSO CORPORATION, The University of TokyoInventors: Hayato SUMIYA, Eisuke TAKAHASHI, Nobuhisa YAMAGUCHI, Masaya TAKAHASHI, Hiroshi FUJIMOTO, Osamu SHIMIZU
-
Publication number: 20220149663Abstract: In a dynamic wireless power transfer system, a power transmission coil is provided in a road. A power transmission circuit supplies electric power to the power transmission coil. A power reception coil is provided in a vehicle. A power reception circuit is connected to the power reception coil. A relay circuit is provided in a tire of the vehicle. The relay circuit includes at least two relay coils that are connected in series. The relay circuit transfers electric power from the power transmission coil to the power reception coil by one relay coil of the two relay coils opposing the power transmission coil and the other relay coil opposing the power reception coil. A resonance frequency of the relay circuit is a frequency that is within a fixed range that is centered on an applied frequency of an alternating-current voltage that is applied to the power transmission coil.Type: ApplicationFiled: January 20, 2022Publication date: May 12, 2022Applicant: DENSO CORPORATIONInventors: Hayato SUMIYA, Eisuke TAKAHASHI, Nobuhisa YAMAGUCHI, Masaya TAKAHASHI
-
Publication number: 20220149665Abstract: A power supplying device includes a power transmission circuit transmitting AC power and a power transmission resonance circuit including a power transmission coil. A power receiving device includes a power reception resonance circuit including a power reception coil. When a coupling coefficient between the power transmission coil and the power reception coil is a predetermined coupling coefficient, resonance of a first resonance mode having a first resonance frequency and a second resonance mode having a second resonance frequency are generated, a resonance frequency of the power transmission resonance circuit and the power reception resonance circuit is set to a value which is one of the first and second resonance frequencies, and the set value is a frequency deviating from a reference resonance frequency of the power transmission resonance circuit alone by a predetermined deviation frequency or more. A driving frequency of the AC power is set to the set value.Type: ApplicationFiled: January 25, 2022Publication date: May 12, 2022Applicant: DENSO CORPORATIONInventors: Kazuyoshi OBAYASHI, Nobuhisa YAMAGUCHI
-
Publication number: 20220149664Abstract: A contactless power feeding device that supplies electric power to a power receiving device without contact includes: a power transmitting circuit that transmits alternating-current power; and a power transmitting resonator including a power transmitting coil. The input impedance of the power transmitting resonator is set low in a facing state in which a power receiving coil included in the power receiving device faces the power transmitting coil, and the input impedance of the power transmitting resonator is set high in a non-facing state in which the power receiving coil does not face the power transmitting coil.Type: ApplicationFiled: January 25, 2022Publication date: May 12, 2022Applicant: DENSO CORPORATIONInventors: Masaya TAKAHASHI, Eisuke TAKAHASHI, Hayato SUMIYA, Nobuhisa YAMAGUCHI
-
Publication number: 20220085658Abstract: A period for performing pre-power-supply check prior to main power supply from a power supply device to a power reception device is provided and, a power-receiving-side controller is configured to: check a supplied electric power supplied from the power supply device to the power reception device, in a state where an effective value of an output voltage of a inverter circuit is fixed to a predetermined first voltage by the power-supply-side controller and an input voltage of the DC-DC converter is fixed to a predetermined second voltage by the power-receiving-side controller, in the pre-power-supply check, and cause, in response to the supplied electric power being equal to a predetermined electric power or more, the power supply device to start the main power supply.Type: ApplicationFiled: November 26, 2021Publication date: March 17, 2022Applicant: DENSO CORPORATIONInventors: Mitsuru SHIBANUMA, Masaki KANESAKI, Nobuhisa YAMAGUCHI
-
Publication number: 20220072965Abstract: In a moving-object power supply system, a control unit selects, as a power transmission segment, one of segments included in at least one power transmission section. The control unit supplies, through a power supply circuit, power to the power transmission segment to thereby generate a magnetic field through a power transmission coil of the power transmission segment. The control unit determines, based on an ascertained first electrical characteristic of the power transmission segment and an ascertained second electrical characteristic of at least one power non-transmission segment, whether there is a malfunction in each of the power transmission segment and the at least one power non-transmission segment.Type: ApplicationFiled: November 17, 2021Publication date: March 10, 2022Applicant: DENSO CORPORATIONInventors: Kouji MAZAKI, Nobuhisa YAMAGUCHI, Eisuke TAKAHASHI, Mitsuru SHIBANUMA, Shinpei TAKITA, Masaya TAKAHASHI, Hayato SUMIYA, Masaki KANESAKI, Takuya KIGUCHI, Kazuhiro UDA, Yuusei NAKAYASHIKI
-
Publication number: 20220037928Abstract: A contactless power supply device that supplies electric power to a vehicle in a contactless manner, includes: a power transmission resonance circuit; a power source circuit supplying direct-current power; and a power transmission circuit converting the direct-current power of the power source circuit into alternating-current power and supplying alternating-current power to the power transmission resonance circuit. The power transmission circuit includes: an inverter circuit converting the direct-current power of the power source circuit into alternating-current power; and a power transmission-side immittance conversion circuit adjusting the alternating-current power of the inverter circuit and supplies the adjusted alternating-current power to the power transmission resonance circuit.Type: ApplicationFiled: October 18, 2021Publication date: February 3, 2022Applicant: DENSO CORPORATIONInventors: Masaya TAKAHASHI, Yuusei NAKAYASHIKI, Eisuke TAKAHASHI, Masaki KANESAKI, Kazuhiro UDA, Nobuhisa YAMAGUCHI
-
Publication number: 20220032778Abstract: In an in-motion power supply system with a plurality of power supply segments to supply power to a vehicle, a vehicle position detection unit detects a position of the vehicle relative to each segment. An electrical characteristic acquisition unit acquires electrical characteristics in the segment involved in power transfer, and an abnormality determination unit uses the electrical characteristics to determine whether there is an abnormality in the segment involved in power transfer.Type: ApplicationFiled: October 19, 2021Publication date: February 3, 2022Applicant: DENSO CORPORATIONInventors: Masaki KANESAKI, Mitsuru SHIBANUMA, Hayato SUMIYA, Takuya KIGUCHI, Eisuke TAKAHASHI, Shinpei TAKITA, Masaya TAKAHASHI, Kazuhiro UDA, Yuusei NAKAYASHIKI, Kazuyoshi OBAYASHI, Nobuhisa YAMAGUCHI
-
Publication number: 20220001753Abstract: A system for power feeding during traveling includes a coil for power transmission, a power supply unit which supplies power to the coils, at least one shielding member which shields an electromagnetic field of the coil, and a hole provided to the shielding members.Type: ApplicationFiled: September 15, 2021Publication date: January 6, 2022Applicant: DENSO CORPORATIONInventors: Eisuke TAKAHASHI, Hayato SUMIYA, Takuya KIGUCHI, Nobuhisa YAMAGUCHI
-
Publication number: 20210391757Abstract: A dynamic wireless power transfer system performs, through a plurality of primary coils installed along a traveling direction of a road and a secondary coil mounted in a vehicle, power transfer to the vehicle while the vehicle is traveling. The secondary coil is an M-phase coil including M coils, M denoting an integer which is two or higher. The M coils each include a coil end extending along a front-rear direction of the vehicle and a main coil portion extending along a width direction of the vehicle, the M coils each being configured such that a magnetic resistance of a magnetic path where a magnetic flux of the coil end passes is higher than a magnetic resistance of a magnetic path where a magnetic flux of the main coil portion passes.Type: ApplicationFiled: August 30, 2021Publication date: December 16, 2021Applicant: DENSO CORPORATIONInventors: Takuya KIGUCHI, Nobuhisa YAMAGUCHI, Eisuke TAKAHASHI, Hayato SUMIYA, Tomoyuki FUJIKAWA, Koji MAZAKI, Shimpei TAKITA, Masaki KANESAKI, Masaya TAKAHASHI, Kazuhiro UDA, Yusei NAKAYASHIKI, Mitsuru SHIBANUMA, Kazuyoshi OBAYASHI
-
Publication number: 20210336487Abstract: A power receiving device installable to a vehicle and included in a contactless power supply system for supplying power in a contactless manner between the power receiving device and a power transmission device installable on a road includes: polyphase receiver coils having at least three phases; an iron core that provides magnetic flux coupling between the receiver coils for the respective phases; and receiver capacitors connected on a one-to-one basis to the receiver coils for the respective phases. The receiver coils for the respective phases are arranged to have inter-coil distances between the receiver coils, with at least one of the inter-coil distances different from the other inter-coil distances. The receiver capacitors have capacitances set based on the inter-coil distances.Type: ApplicationFiled: July 7, 2021Publication date: October 28, 2021Applicant: DENSO CORPORATIONInventors: Norihito KIMURA, Eisuke TAKAHASHI, Masaki KANESAKI, Nobuhisa YAMAGUCHI
-
Publication number: 20210143684Abstract: A contactless power feeding apparatus includes a plurality of primary coils mounted on a road and a power feed controller which uses a portion of the primary coils as a power transmitting coil to achieve delivery of electrical power from the power transmitting coil to a secondary coil mounted in a vehicle. The power feed controller uses a selected primary coil that is one of the primary coils other than the power transmitting coil to decrease a leakage of magnetic flux arising from excitation of the power transmitting coil. Instead of the selected primary coil, the secondary coil may be used to reduce the leakage of magnetic flux.Type: ApplicationFiled: January 15, 2021Publication date: May 13, 2021Applicant: DENSO CORPORATIONInventors: Hayato SUMIYA, Eisuke TAKAHASHI, Nobuhisa YAMAGUCHI, Kazuyoshi OBAYASHI, Shimpei TAKITA, Koji MAZAKI, Mitsuru SHIBANUMA, Masaki KANESAKI, Takuya KIGUCHI, Kazuhiro UDA
-
Publication number: 20210114465Abstract: A contactless power supply system is provided for supplying electric power to a vehicle in a contactless manner during traveling of the vehicle. The contactless power supply system includes a plurality of primary coils installed along a traveling direction in a road and a secondary coil mounted to the vehicle. Each of the primary coils is a single-phase coil with the secondary coil being a multi-phase coil, or is a multi-phase coil with the secondary coil being a single-phase coil.Type: ApplicationFiled: December 28, 2020Publication date: April 22, 2021Applicant: DENSO CORPORATIONInventors: Eisuke TAKAHASHI, Nobuhisa YAMAGUCHI, Koji MAZAKI, Shimpei TAKITA, Hayato SUMIYA, Masaki KANESAKI, Takuya KIGUCHI, Kazuhiro UDA, Mitsuru SHIBANUMA, Kazuyoshi OBAYASHI, Tomoyuki FUJIKAWA, Masaya TAKAHASHI, Yusei NAKAYASHIKI
-
Patent number: 10862403Abstract: A power inversion apparatus includes a smoothing capacitor, first and second primary coils, a secondary coil, first to fourth switches of bridge circuit switches, a clamp capacitor, and a switch controller. The switch controller calculates a lower-arm duty ratio of each of the first and second switches using a map or a mathematical expression by feed-forward control based on an input voltage. The switch controller outputs a fixed value that is equal to or greater than a maximum value of the lower-arm duty ratio within a variation range of the input voltage as an upper-arm duty ratio of each of the third and fourth switches. The switch controller generates a pulse width modulation signal based on the calculated lower-arm duty ratio and the fixed value of the upper-arm duty ratio, and outputs the pulse width modulation signal to the bridge circuit switches.Type: GrantFiled: January 17, 2020Date of Patent: December 8, 2020Assignee: DENSO CORPORATIONInventors: Masaya Takahashi, Nobuhisa Yamaguchi, Masaki Kanesaki, Shoichi Takemoto
-
Publication number: 20200153342Abstract: A power inversion apparatus includes a smoothing capacitor, first and second primary coils, a secondary coil, first to fourth switches of bridge circuit switches, a clamp capacitor, and a switch controller. The switch controller calculates a lower-arm duty ratio of each of the first and second switches using a map or a mathematical expression by feed-forward control based on an input voltage. The switch controller outputs a fixed value that is equal to or greater than a maximum value of the lower-arm duty ratio within a variation range of the input voltage as an upper-arm duty ratio of each of the third and fourth switches. The switch controller generates a pulse width modulation signal based on the calculated lower-arm duty ratio and the fixed value of the upper-arm duty ratio, and outputs the pulse width modulation signal to the bridge circuit switches.Type: ApplicationFiled: January 17, 2020Publication date: May 14, 2020Inventors: Masaya TAKAHASHI, Nobuhisa YAMAGUCHI, Masaki KANESAKI, Shoichi TAKEMOTO
-
Publication number: 20190273447Abstract: In a discharge generator, a switch is connected to a DC power source, and a transformer includes a primary coil connected to the switch, and a secondary coil magnetically coupled to the primary coil and connected to a discharge load. A power measuring unit measures input power supplied from the direct-current power source. A control unit controls on-off switching operations of the switch to thereby convert an input direct-current voltage to an alternating-current voltage. The control unit changes a switching frequency of the on switching operations of the switch while performing an analysis of a frequency characteristic of the input power based on change of the switching frequency. The control unit determines whether the discharge load is a normal state or at least one of predetermined failure modes has occurred in the discharge load in accordance with a result of the analysis of the frequency characteristic of the input power.Type: ApplicationFiled: February 28, 2019Publication date: September 5, 2019Inventors: Shoichi Takemoto, Nobuhisa Yamaguchi
-
Publication number: 20190245525Abstract: A pulse power source apparatus that supplies a drive power to a pulse load circuit that periodically generates pulse current constituted of one or more consecutive pulses from the drive power. The pulse power source apparatus includes a DC voltage generation unit generating DC output voltage supplied to the pulse load circuit, and a pulse load drive signal generation unit generating a drive signal that drives the pulse load circuit to generate the pulse current. The DC output voltage which has dropped due to output of the pulse current is controlled such that a timing at which the DC output voltage reaches a reference potential corresponds to a timing at which a subsequent pulse current is generated, the reference potential being a potential capable of generating the pulse.Type: ApplicationFiled: February 5, 2019Publication date: August 8, 2019Inventors: Masaki KANESAKI, Nobuhisa YAMAGUCHI, Shoichi TAKEMOTO