Patents by Inventor Noburu Shimizu

Noburu Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10207390
    Abstract: A processing end point detection method detects a timing of a processing end point (e.g., polishing stop, changing of polishing conditions) by calculating a characteristic value of a surface of a workpiece (an object of polishing) such as a substrate. This method includes producing a spectral waveform indicating a relationship between reflection intensities and wavelengths at a processing end point, with use of a reference workpiece or simulation calculation, based on the spectral waveform, selecting wavelengths of a local maximum value and a local minimum value of the reflection intensities, calculating the characteristic value with respect to a surface, to be processed, from reflection intensities at the selected wavelengths, setting a distinctive point of time variation of the characteristic value at a processing end point of the workpiece as the processing end point, and detecting the processing end point of the workpiece by detecting the distinctive point during processing of the workpiece.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: February 19, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Noburu Shimizu, Shinro Ohta, Koji Maruyama, Yoichi Kobayashi, Ryuichiro Mitani, Shunsuke Nakai, Atsushi Shigeta
  • Publication number: 20140004773
    Abstract: A processing end point detection method detects a timing of a processing end point (e.g., polishing stop, changing of polishing conditions) by calculating a characteristic value of a surface of a workpiece (an object of polishing) such as a substrate. This method includes producing a spectral waveform indicating a relationship between reflection intensities and wavelengths at a processing end point, with use of a reference workpiece or simulation calculation, based on the spectral waveform, selecting wavelengths of a local maximum value and a local minimum value of the reflection intensities, calculating the characteristic value with respect to a surface, to be processed, from reflection intensities at the selected wavelengths, setting a distinctive point of time variation of the characteristic value at a processing end point of the workpiece as the processing end point, and detecting the processing end point of the workpiece by detecting the distinctive point during processing of the workpiece.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Applicants: KABUSHIKI KAISHA TOSHIBA, EBARA CORPORATION
    Inventors: Noburu SHIMIZU, Shinro OHTA, Koji MARUYAMA, Yoichi KOBAYASHI, Ryuichiro MITANI, Shunsuke NAKAI, Atsushi SHIGETA
  • Patent number: 8554356
    Abstract: A processing end point detection method detects a timing of a processing end point (e.g., polishing stop, changing of polishing conditions) by calculating a characteristic value of a surface of a workpiece (an object of polishing) such as a substrate. This method includes producing a spectral waveform indicating a relationship between reflection intensities and wavelengths at a processing end point, with use of a reference workpiece or simulation calculation, based on the spectral waveform, selecting wavelengths of a local maximum value and a local minimum value of the reflection intensities, calculating the characteristic value with respect to a surface, to be processed, from reflection intensities at the selected wavelengths, setting a distinctive point of time variation of the characteristic value at a processing end point of the workpiece as the processing end point, and detecting the processing end point of the workpiece by detecting the distinctive point during processing of the workpiece.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: October 8, 2013
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Noburu Shimizu, Shinro Ohta, Koji Maruyama, Yoichi Kobayashi, Ryuichiro Mitani, Shunsuke Nakai, Atsushi Shigeta
  • Patent number: 8398811
    Abstract: A polishing apparatus has a polishing section (302) configured to polish a substrate and a measurement section (307) configured to measure a thickness of a film formed on the substrate. The polishing apparatus also has an interface (310) configured to input a desired thickness of a film formed on a substrate to be polished and a storage device (308a) configured to store polishing rate data on at least one past substrate therein. The polishing apparatus includes an arithmetic unit (308b) operable to calculate a polishing rate and an optimal polishing time based on the polishing rate data and the desired thickness by using a weighted average method which weights the polishing rate data on a lately polished substrate.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 19, 2013
    Assignee: Ebara Corporation
    Inventors: Tatsuya Sasaki, Naoshi Yamada, Yoshifumi Katsumata, Noburu Shimizu, Seiryo Tsuno, Takashi Mitsuya
  • Patent number: 8388408
    Abstract: A method of producing a diagram for use in selecting wavelengths of light in optical polishing end point detection is provided. The method includes polishing a surface of a substrate having a film by a polishing pad; applying light to the surface of the substrate and receiving reflected light from the substrate during the polishing of the substrate; calculating relative reflectances of the reflected light at respective wavelengths; determining wavelengths of the reflected light which indicate a local maximum point and a local minimum point of the relative reflectances which vary with a polishing time; identifying a point of time when the wavelengths, indicating the local maximum point and the local minimum point, are determined; and plotting coordinates, specified by the wavelengths and the point of time corresponding to the wavelengths, onto a coordinate system having coordinate axes indicating wavelength of the light and polishing time.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: March 5, 2013
    Assignee: Ebara Corporation
    Inventors: Yoichi Kobayashi, Noburu Shimizu, Shinrou Ohta
  • Patent number: 8157616
    Abstract: A method for detecting an end point of a polishing operation (e.g., a polishing stop point or a changing point of polishing conditions) of a film of a substrate is described. The method includes applying light to a surface of a substrate during polishing of the substrate; receiving reflected light from the surface of the substrate, monitoring a first characteristic value and a second characteristic value calculated from reflection intensities at different wavelengths; detecting a point when an extremal point of the first characteristic value and an extremal point of the second characteristic value appear within a predetermined time difference; after detecting the point, detecting a predetermined extremal point of the first characteristic value or the second characteristic value; and determining a polishing end point based on a point when the predetermined extremal point is detected.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: April 17, 2012
    Assignee: Ebara Corporation
    Inventors: Noburu Shimizu, Shinrou Ohta
  • Publication number: 20110306274
    Abstract: A polishing apparatus has a polishing section (302) configured to polish a substrate and a measurement section (307) configured to measure a thickness of a film formed on the substrate. The polishing apparatus also has an interface (310) configured to input a desired thickness of a film formed on a substrate to be polished and a storage device (308a) configured to store polishing rate data on at least one past substrate therein. The polishing apparatus includes an arithmetic unit (308b) operable to calculate a polishing rate and an optimal polishing time based on the polishing rate data and the desired thickness by using a weighted average method which weights the polishing rate data on a lately polished substrate.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 15, 2011
    Inventors: Tatsuya SASAKI, Naoshi Yamada, Yoshifumi Katsumata, Noburu Shimizu, Seiryo Tsuno, Takashi Mitsuya
  • Patent number: 8025759
    Abstract: A polishing apparatus has a polishing section (302) configured to polish a substrate and a measurement section (307) configured to measure a thickness of a film formed on the substrate. The polishing apparatus also has an interface (310) configured to input a desired thickness of a film formed on a substrate to be polished and a storage device (308a) configured to store polishing rate data on at least one past substrate therein. The polishing apparatus includes an arithmetic unit (308b) operable to calculate a polishing rate and an optimal polishing time based on the polishing rate data and the desired thickness by using a weighted average method which weights the polishing rate data on a lately polished substrate.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: September 27, 2011
    Assignee: Ebara Corporation
    Inventors: Tatsuya Sasaki, Naoshi Yamada, Yoshifumi Katsumata, Noburu Shimizu, Seiryo Tsuno, Takashi Mitsuya
  • Patent number: 7960188
    Abstract: A method for polishing a substrate having a metal film thereon is described. The substrate has metal interconnects formed from part of the metal film. The polishing method includes performing a first polishing process of removing the metal film, after the first polishing process, performing a second polishing process of removing the barrier film, after the second polishing process, performing a third polishing process of polishing the insulating film. During the second polishing process and the third polishing process, a polishing state of the substrate is monitored with an eddy current sensor, and the third polishing process is terminated when an output signal of the eddy current sensor reaches a predetermined threshold.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 14, 2011
    Assignee: Ebara Corporation
    Inventors: Shinrou Ohta, Mitsuo Tada, Noburu Shimizu, Yoichi Kobayashi, Taro Takahashi, Eisaku Hayashi, Hiromitsu Watanabe, Tatsuya Kohama, Itsuki Kobata
  • Patent number: 7780503
    Abstract: A polishing apparatus makes it possible to polish and remove an extra conductive film while preventing the occurrence of erosion and without lowering of the throughput. The polishing apparatus includes: a polishing table having a polishing surface; a top ring for holding a workpiece having a surface conductive film, and pressing the conductive film against the polishing surface to polish the conductive film; an optical sensor for monitoring the polishing state of the conductive film by emitting light toward the conductive film of the workpiece held by the top ring, receiving reflected light from the conductive film, and measuring a change in the reflectance of the reflected light; and a control section for controlling a pressure at which the workpiece is pressed on the polishing surface.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: August 24, 2010
    Assignee: Ebara Corporation
    Inventors: Shinrou Ohta, Noburu Shimizu, Yoichi Kobayashi
  • Publication number: 20100093260
    Abstract: A method of producing a diagram for use in selecting wavelengths of light in optical polishing end point detection is provided. The method includes polishing a surface of a substrate having a film by a polishing pad; applying light to the surface of the substrate and receiving reflected light from the substrate during the polishing of the substrate; calculating relative reflectances of the reflected light at respective wavelengths; determining wavelengths of the reflected light which indicate a local maximum point and a local minimum point of the relative reflectances which vary with a polishing time; identifying a point of time when the wavelengths, indicating the local maximum point and the local minimum point, are determined; and plotting coordinates, specified by the wavelengths and the point of time corresponding to the wavelengths, onto a coordinate system having coordinate axes indicating wavelength of the light and polishing time.
    Type: Application
    Filed: August 14, 2009
    Publication date: April 15, 2010
    Inventors: Yoichi Kobayashi, Noburu Shimizu, Shinrou Ohta, Toshifumi Kimba, Masaki Kinoshita
  • Publication number: 20100015889
    Abstract: The present invention relates to a processing end point detection method for detecting a timing of a processing end point (e.g., polishing stop, changing of polishing conditions) by calculating a characteristic value of a surface of a workpiece (an object of polishing) such as a substrate.
    Type: Application
    Filed: October 5, 2007
    Publication date: January 21, 2010
    Inventors: Noburu Shimizu, Shinro Ohta, Koji Maruyama, Yoichi Kobayashi, Ryuichiro Mitani, Shunsuke Nakai, Atsushi Shigeta
  • Publication number: 20090298387
    Abstract: A method for detecting an end point of a polishing operation (e.g., a polishing stop point or a changing point of polishing conditions) of a film of a substrate is described. The method includes applying light to a surface of a substrate during polishing of the substrate; receiving reflected light from the surface of the substrate, monitoring a first characteristic value and a second characteristic value calculated from reflection intensities at different wavelengths; detecting a point when an extremal point of the first characteristic value and an extremal point of the second characteristic value appear within a predetermined time difference; after detecting the point, detecting a predetermined extremal point of the first characteristic value or the second characteristic value; and determining a polishing end point based on a point when the predetermined extremal point is detected.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 3, 2009
    Inventors: Noburu SHIMIZU, Shinrou Ohta
  • Publication number: 20090286332
    Abstract: A method for polishing a substrate having a metal film thereon is described. The substrate has metal interconnects formed from part of the metal film. The polishing method includes performing a first polishing process of removing the metal film, after the first polishing process, performing a second polishing process of removing the barrier film, after the second polishing process, performing a third polishing process of polishing the insulating film, during the second polishing process and the third polishing process, monitoring a polishing state of the substrate with an eddy current sensor, and terminating the third polishing process when an output signal of the eddy current sensor reaches a predetermined threshold.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 19, 2009
    Inventors: Shinrou OHTA, Mitsuo Tada, Noburu Shimizu, Yoichi Kobayashi, Taro Takahashi, Eisaku Hayashi, Hiromitsu Watanabe, Tatsuya Kohama, Itsuki Kobata
  • Publication number: 20090130956
    Abstract: A polishing apparatus makes it possible to polish and remove an extra conductive film while preventing the occurrence of erosion and without lowering of the throughput. The polishing apparatus includes: a polishing table having a polishing surface; a top ring for holding a workpiece having a surface conductive film, and pressing the conductive film against the polishing surface to polish the conductive film; an optical sensor for monitoring the polishing state of the conductive film by emitting light toward the conductive film of the workpiece held by the top ring, receiving reflected light from the conductive film, and measuring a change in the reflectance of the reflected light; and a control section for controlling a pressure at which the workpiece is pressed on the polishing surface.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 21, 2009
    Inventors: Shinrou Ohta, Noburu Shimizu, Yoichi Kobayashi
  • Publication number: 20070243797
    Abstract: A polishing method for polishing a workpiece using the chemical polishing process endpoint detecting technology is applicable to actual polishing processes and polishing apparatus. The polishing method including pressing the workpiece against a polishing surface of a polishing table, moving the workpiece and the polishing surface relatively to each other to polish the workpiece, and disposing a gas suction pipe having a gas inlet port, directly above the polishing surface, supplying an atmospheric gas from above the polishing surface through the gas inlet port to a gas detector via the gas suction pipe, and monitoring a particular gas contained in the atmospheric gas with the gas detector while the workpiece is being polished.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 18, 2007
    Inventors: Akira Fukunaga, Noburu Shimizu, Shintaro Kamioka, Manabu Tsujimura
  • Publication number: 20060166503
    Abstract: A polishing apparatus has a polishing section (302) configured to polish a substrate and a measurement section (307) configured to measure a thickness of a film formed on the substrate. The polishing apparatus also has an interface (310) configured to input a desired thickness of a film formed on a substrate to be polished and a storage device (308a) configured to store polishing rate data on at least one past substrate therein. The polishing apparatus includes an arithmetic unit (308b) operable to calculate a polishing rate and an optimal polishing time based on the polishing rate data and the desired thickness by using a weighted average method which weights the polishing rate data on a lately polished substrate.
    Type: Application
    Filed: July 1, 2004
    Publication date: July 27, 2006
    Inventors: Tatsuya Sasaki, Naoshi Yamada, Yoshifumi Katsumata, Noburu Shimizu, Seiryo Tsuno, Takashi Mitsuya
  • Patent number: 7011569
    Abstract: A workpiece such as a semiconductor wafer is polished by pressing the workpiece against a polishing surface under a predetermined pressure. A polished surface of the workpiece is processed by pressing the workpiece against a processing surface under a predetermined pressure while the processing surface makes circulatory translational motion along a predetermined path. The processing surface comprises a surface of a polishing cloth or a surface of an abrading plate, and the polished surface of the workpiece is further polished or cleaned.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 14, 2006
    Assignee: Ebara Corporation
    Inventors: Noburu Shimizu, Norio Kimura
  • Publication number: 20050090188
    Abstract: A workpiece such as a semiconductor wafer is polished by pressing the workpiece against a polishing surface under a predetermined pressure. A polished surface of the workpiece is processed by pressing the workpiece against a processing surface under a predetermined pressure while the processing surface makes circulatory translational motion along a predetermined path. The processing surface comprises a surface of a polishing cloth or a surface of an abrading plate, and the polished surface of the workpiece is further polished or cleaned.
    Type: Application
    Filed: November 12, 2004
    Publication date: April 28, 2005
    Inventors: Noburu Shimizu, Norio Kimura
  • Patent number: 6595831
    Abstract: A polishing method and apparatus can concurrently establish a stable removal rate, a small step height reduction rate, and reduction of detects on the polished surface for various kinds of polished subjects, while providing less environmental problems and requiring less processing costs. The method for polishing a surface of a semiconductor device wafer comprises first polishing a surface of the semiconductor wafer by a first fixed abrasive polishing method; and finish polishing the polished surface of the semiconductor wafer by a second fixed abrasive polishing method different from the first fixed abrasive polishing method.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: July 22, 2003
    Assignee: Ebara Corporation
    Inventors: Kazuto Hirokawa, Hirokuni Hiyama, Yutaka Wada, Hisanori Matsuo, Noburu Shimizu