Patents by Inventor Noriaki Ikemoto

Noriaki Ikemoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9200552
    Abstract: In an apparatus for controlling supply power to a conductive porous carrier of a catalyst converter for cleaning an emission, a moisture determiner determines whether moisture is contained in and/or on the conductive porous carrier. A power controller controls supply power to the conductive porous carrier for energization of the conductive porous carrier such that a value of the supply power to the conductive porous carrier when it is determined that the moisture is contained in and/or on the conductive porous carrier is lower than a value of the supply power to the conductive porous carrier when it is determined that the moisture is not contained in and/or on the conductive porous carrier.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: December 1, 2015
    Assignee: DENSO CORPORATION
    Inventors: Taro Hirai, Noriaki Ikemoto, Takeshi Harada, Naoyuki Kamiya, Hisashi Iida
  • Patent number: 9162671
    Abstract: A hybrid vehicle control unit (HV-ECU) sets a sub-battery voltage during an engine non-operation time to be lower than a sub-battery voltage during the normal time, which decreases a charge amount to the sub-battery relative to an amount during the normal time. The HV-ECU sets the sub-battery voltage during an engine operation time to be higher than the sub-battery voltage during the engine non-operation time, which increases the charge amount to the sub-battery relative to an amount during the engine non-operation time. A SOC control according to the above-described scheme prevents a SOC decrease of the sub-battery SOC in comparison to the conventional SOC control scheme, thereby preventing charging of the sub-battery when the main battery SOC is lower than a certain threshold. Therefore, a run-down of the sub-battery is prevented.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 20, 2015
    Assignee: DENSO CORPORATION
    Inventors: Yutaro Itoh, Noriaki Ikemoto
  • Patent number: 9127582
    Abstract: A hybrid vehicle control apparatus for a hybrid vehicle capable of EV travel generated by a motor-generator with an internal combustion engine is provided. The control apparatus includes a maximum value calculation unit for calculating a maximum value of a supply of electric power for an electrically-heated catalyst, when the internal combustion engine is in a stopped state, provided to the electrically-heated catalyst based on (i) at least one of a start-up electric power required for starting up the engine or an operation electric power required for operating a supplemental device, (ii) an electric power output limit value of the battery, and (iii) an electric power required for a travel of the hybrid vehicle. The control apparatus also includes a power supply controller for controlling the supply of electric power for the electrically-heated catalyst based on the maximum value of the supply of electric power for the electrically-heated catalyst.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 8, 2015
    Assignee: DENSO CORPORATION
    Inventors: Takeshi Harada, Noriaki Ikemoto
  • Publication number: 20150197238
    Abstract: A hybrid vehicle control unit (HV-ECU) sets a sub-battery voltage during an engine non-operation time to be lower than a sub-battery voltage during the normal time, which decreases a charge amount to the sub-battery relative to an amount during the normal time. The HV-ECU sets the sub-battery voltage during an engine operation time to be higher than the sub-battery voltage during the engine non-operation time, which increases the charge amount to the sub-battery relative to an amount during the engine non-operation time. An SOC control according to the above-described scheme prevents an SOC decrease of the sub-battery SOC in comparison to the conventional SOC control scheme, thereby preventing charging of the sub-battery when the main battery SOC is lower than a certain threshold. Therefore, a run-down of the sub-battery is prevented.
    Type: Application
    Filed: January 13, 2015
    Publication date: July 16, 2015
    Inventors: Yutaro ITOH, Noriaki IKEMOTO
  • Publication number: 20150105957
    Abstract: A vehicle includes an engine, a first MG, a second MG, a main battery which can be charged and discharged, and a heating device. The heating device includes an exhaust heater which uses an exhaust heat of the engine, and a heat pump system which uses an electric power of the main battery. A hybrid control device determines a start timing of the heating device, based on a coolant temperature and a SOC. Specifically, the start timing of the heating device is determined such that a timing that the coolant temperature reaches a target temperature matches a timing that the SOC reaches a target value. After a warming-up operation is completed, an EV travelling of the vehicle can be executed according to the electric power of the main battery charged in the warming-up operation, and a fuel consumption of the engine is improved.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: Tsuyoshi OKAMOTO, Noriaki IKEMOTO, Youhei MORIMOTO, Yuutarou ITOU
  • Publication number: 20150104687
    Abstract: A battery warming-up system includes a main battery, an electric heating portion, and a control device. The main battery is mounted to a vehicle to supply an electric power to drive the vehicle, and is warmed by a heat generation of an inner resistance of the main battery according to an input and output of the electric power. The electric heating portion heats a compartment of the vehicle by using the electric power supplied from the main battery. The control device controls a temperature of the main battery by controlling a power supply from the main battery to the electric heating portion. The output of the main battery is increased by increasing the power supply from the main battery to the electric heating portion, and the main battery can be suitably warmed. Therefore, since a power loss due to a decrease of the inner resistance of the main battery is improved or the battery output becomes sufficient, the driving power of the vehicle can be properly ensured.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Youhei MORIMOTO, Noriaki IKEMOTO, Tsuyoshi OKAMOTO, Yuutarou ITOU
  • Publication number: 20150094894
    Abstract: A hybrid vehicle controller controls a start or a stop of an engine according to a heating requirement or an engine-warming requirement. When at least one of the heating requirement and the engine-warming requirement is generated and a state of charge (SOC) of a main battery is higher than a specified threshold, the controller performs an SOC-fall-control to drop an SOC of a main battery. When the SOC of the main battery falls to a specified value, the engine is restarted. Since the engine can be started in a state where the SOC is lower enough than the upper limit by performing the SOC-fall-control, the engine output power can be converted into the heat for heating the passenger compartment or warming-up the engine.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Yutaro ITO, Noriaki Ikemoto, Tsuyoshi Okamoto, Youhei Morimoto
  • Publication number: 20140331657
    Abstract: A vehicle includes an internal combustion engine, a generator driven by a power of the internal combustion engine, and an electrically heated catalyst purifying an exhaust gas of the internal combustion engine. A catalyst warming-up control apparatus applied to the vehicle includes a catalyst warming-up control portion executing a catalyst warming-up control in which the generator is driven by the power of the internal combustion engine to generate electricity, and a generated electric power of the generator is supplied to the electrically heated catalyst to energize and heat the electrically heated catalyst, in a reduction time period where an engine speed is reduced.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 13, 2014
    Applicant: DENSO CORPORATION
    Inventors: Noriaki IKEMOTO, Takeshi HARADA
  • Patent number: 8775051
    Abstract: An apparatus is used for diagnosing the temperature state of a catalyst converter. The catalyst converter includes a catalyst for cleaning an emission, and a conductive carrier for carrying the catalyst. The conductive carrier is energized for temperature rise of the catalyst, and the conductive carrier has a characteristic in which resistance drops with temperature increase. In the apparatus, a first obtaining unit obtains a first parameter having a first correlation with supply power to the conductive carrier for energization of the conductive carrier. A second obtaining unit obtains a second parameter having a second correlation with a temperature of the conductive carrier. A diagnosing unit diagnoses the temperature state of the conductive carrier based on a comparison between the first parameter and the second parameter.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 8, 2014
    Assignee: Denso Corporation
    Inventors: Taro Hirai, Noriaki Ikemoto, Takeshi Harada, Naoyuki Kamiya, Hisashi Iida
  • Patent number: 8751187
    Abstract: In an apparatus, a temperature obtainer obtains, in a learning mode of the apparatus during a conductive carrier being deenergized a, value of a carrier temperature based on a physical parameter correlative with the carrier temperature and different from a carrier resistance. A resistance obtainer instantaneously energizes, in the learning mode, the conductive carrier to obtain a value of the carrier resistance during the instant energization. A calculator obtains, in a normal operation mode of the apparatus after the learning mode, a value of the carrier resistance, and calculates, in the normal operation mode, a value of the carrier temperature based on: the obtained value of the carrier resistance in the normal operation mode, and a pair of the value of the carrier temperature and the value of the carrier resistance obtained in the learning mode.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 10, 2014
    Assignee: Denso Corporation
    Inventors: Taro Hirai, Noriaki Ikemoto, Takeshi Harada, Naoyuki Kamiya
  • Publication number: 20140000245
    Abstract: A hybrid vehicle control apparatus for a hybrid vehicle capable of EV travel generated by a motor-generator with an internal combustion engine is provided. The control apparatus includes a maximum value calculation unit for calculating a maximum value of a supply of electric power for an electrically-heated catalyst, when the internal combustion engine is in a stopped state, provided to the electrically-heated catalyst based on (i) at least one of a start-up electric power required for starting up the engine or an operation electric power required for operating a supplemental device, (ii) an electric power output limit value of the battery, and (iii) an electric power required for a travel of the hybrid vehicle. The control apparatus also includes a power supply controller for controlling the supply of electric power for the electrically-heated catalyst based on the maximum value of the supply of electric power for the electrically-heated catalyst.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Takeshi HARADA, Noriaki Ikemoto
  • Patent number: 8607552
    Abstract: In an emission control system, an absorbent in an exhaust-emission passage absorbs a particular component in the emission with a temperature thereof being lower than a first temperature, and desorbs therefrom the absorbed particular component with the temperature thereof being equal to or higher than the first temperature. A catalyst in the exhaust-emission passage converts the particular component desorbed from the absorbent into another component with a temperature thereof being equal to or higher than a second temperature higher than the first temperature. A heat recovery device is disposed in the exhaust-emission passage upstream of the absorbent and recovers heat from the exhaust emission by heat exchange between a heat-transfer medium and the exhaust emission. An adjusting unit adjusts an amount of heat to be recovered by the heat recovery device to thereby adjust a temperature state of the exhaust emission.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 17, 2013
    Assignee: Denso Corporation
    Inventors: Noriaki Ikemoto, Tubasa Sakuishi, Hisashi Iida, Naoyuki Kamiya
  • Patent number: 8205438
    Abstract: A catalyst is provided in an exhaust passage of an engine and an evaporating section of a heat recovery device is provided upstream of the catalyst in the exhaust passage. An ECU performs an operation for compulsorily oscillating an air-fuel ratio between a lean state and a rich state as compared to a theoretical air-fuel ratio when temperature of the catalyst reaches temperature at which the catalyst has a predetermined purification capacity after the engine is started. The ECU restricts a flow of a working fluid in the heat recovery device until the temperature of the catalyst reaches the temperature at which the catalyst has the predetermined purification capacity after the engine is started.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: June 26, 2012
    Assignee: Denso Corporation
    Inventor: Noriaki Ikemoto
  • Patent number: 8052571
    Abstract: In a hybrid vehicle that includes an engine and a motor-generator connected to the engine through a power split device, upon acceleration in a running state, there may arise a case where the rotational speed of the MG1 enters a lockup area and, then, the MG1 cannot pull out of the lockup state with ease in such a manner that the rotational speed of the MG1 is shifted from a normal rotation area to a reverse rotation area, in accordance with an increase of a torque produced by the MG1. In this case, the engine is controlled such that a torque produced by the engine is decreased. Thus, the rotational speeds of the engine and MG1 are reduced entirely, so that the MG1 can pull out of the lockup state without increasing the torque produced by the MG1 any more.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: November 8, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Kenji Yamada, Takeshi Itoh, Noriaki Ikemoto
  • Publication number: 20110265460
    Abstract: In an apparatus for controlling supply power to a conductive porous carrier of a catalyst converter for cleaning an emission, a moisture determiner determines whether moisture is contained in and/or on the conductive porous carrier. A power controller controls supply power to the conductive porous carrier for energization of the conductive porous carrier such that a value of the supply power to the conductive porous carrier when it is determined that the moisture is contained in and/or on the conductive porous carrier is lower than a value of the supply power to the conductive porous carrier when it is determined that the moisture is not contained in and/or on the conductive porous carrier.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 3, 2011
    Applicant: DENSO CORPORATION
    Inventors: Taro Hirai, Noriaki Ikemoto, Takeshi Harada, Naoyuki Kamiya, Hisashi Iida
  • Publication number: 20110268613
    Abstract: An apparatus is used for diagnosing the temperature state of a catalyst converter. The catalyst converter includes a catalyst for cleaning an emission, and a conductive carrier for carrying the catalyst. The conductive carrier is energized for temperature rise of the catalyst, and the conductive carrier has a characteristic in which resistance drops with temperature increase. In the apparatus, a first obtaining unit obtains a first parameter having a first correlation with supply power to the conductive carrier for energization of the conductive carrier. A second obtaining unit obtains a second parameter having a second correlation with a temperature of the conductive carrier. A diagnosing unit diagnoses the temperature state of the conductive carrier based on a comparison between the first parameter and the second parameter.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 3, 2011
    Applicant: DENSO CORPORATION
    Inventors: Taro HIRAI, Noriaki IKEMOTO, Takeshi HARADA, Naoyuki KAMIYA, Hisashi IIDA
  • Publication number: 20110270568
    Abstract: In an apparatus, a temperature obtainer obtains, in a learning mode of the apparatus during a conductive carrier being deenergized a, value of a carrier temperature based on a physical parameter correlative with the carrier temperature and different from a carrier resistance. A resistance obtainer instantaneously energizes, in the learning mode, the conductive carrier to obtain a value of the carrier resistance during the instant energization. A calculator obtains, in a normal operation mode of the apparatus after the learning mode, a value of the carrier resistance, and calculates, in the normal operation mode, a value of the carrier temperature based on: the obtained value of the carrier resistance in the normal operation mode, and a pair of the value of the carrier temperature and the value of the carrier resistance obtained in the learning mode.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 3, 2011
    Applicant: DENSO CORPORATION
    Inventors: Taro HIRAI, Noriaki IKEMOTO, Takeshi HARADA, Naoyuki KAMIYA
  • Patent number: 7946951
    Abstract: During a standstill, a prescribed rotation speed N3, which is lower than a prescribed rotation speed N2 used during a travel at a low vehicle speed, is set as a minimum rotation speed Nemin (S410), and when a demand for an idle operation has been made (S490), the minimum rotation speed Nemin is set as a target rotation speed Ne* and the value 0 is set as a target torque Te* (S500), whereby an engine is controlled. As a result of this, it is possible to improve the fuel consumption of a vehicle when the engine is operated at idle at standstill compared to a case where the engine is operated at idle at the minimum rotation speed Nemin for which the prescribed rotation speed N2 is set regardless of whether or not the vehicle is at a standstill.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: May 24, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Aisin AW Co., Ltd.
    Inventors: Akihiro Kimura, Toshiya Hashimoto, Shunsuke Oyama, Masaya Yamamoto, Kiyoshiro Ueoka, Noriaki Ikemoto, Masaki Nomura
  • Publication number: 20110083426
    Abstract: In an emission control system, an absorbent in exhaust-emission passage absorbs a particular component in the emission with a temperature thereof being lower than a first temperature, and desorbs therefrom the absorbed particular component with the temperature thereof being equal to or higher than the first temperature. A catalyst in the exhaust-emission passage converts the particular component desorbed from the absorbent into another component with a temperature thereof being equal to or higher than a second temperature higher than the first temperature. A heat recovery device is disposed in the exhaust-emission passage upstream of the absorbent and recovers heat from the exhaust emission by heat exchange between a heat-transfer medium and the exhaust emission. An adjusting unit adjusts an amount of heat to be recovered by the heat recovery device to thereby adjust a temperature state of the exhaust emission.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: DENSO CORPORATION
    Inventors: Noriaki Ikemoto, Tubasa Sakuishi, Hisashi Iida, Naoyuki Kamiya
  • Patent number: 7921943
    Abstract: In a hybrid vehicle according to the invention, upon satisfaction of a predetermined condition with regard to a gearshift position or a drive mode, a virtual gearshift position according to a driving condition is set to a tentative target gearshift position SPtmp (steps S471 and S472). An object gearshift position SP* is set based on the tentative target gearshift position SPtmp and a boundary value Srt to have a gentle change with a variation of smaller than 1 (step S473).
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: April 12, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Kiyoshiro Ueoka, Noriaki Ikemoto