Patents by Inventor Okke Ouweltjes

Okke Ouweltjes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11517256
    Abstract: A method of characterizing a patient's disordered breathing during a sleeping period includes performing a first partial characterization of a time axis of an audio signal in order to learn the most prominent and highly relevant events. Only at a later stage, i.e., after sufficient observation of the highly relevant events, is a full segmentation of the entire time axis actually carried out. Linear prediction is used to create an excitation signal that is employed to provide better segmentation than would be possible using the original audio signal alone. Warped linear prediction or Laguerre linear prediction is employed to create an accurate spectral representation with flexibility in the details provided in different frequency ranges. A resonance probability function is generated to further characterize the signals in order to identify disordered breathing. An output includes a characterization in any of a variety of forms of identified disordered breathing.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: December 6, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Albertus Cornelis Den Brinker, Okke Ouweltjes, Armin Gerhard Kohlrausch, Koray Karakaya
  • Patent number: 11441998
    Abstract: A laser sensor module measures a particle density of particles with a size of less than 20 ?m. The laser sensor module includes: a laser configured to emit a laser beam; a detector; and an optical arrangement. The optical arrangement is configured to focus the laser beam to a focus region. The laser is configured to emit the laser beam through the optical arrangement to the focus region. The optical arrangement has an emission window. The detector is configured to determine an interference signal of an interference of reflected laser light with emitted later light of the laser beam. The laser sensor module is configured to provide an indication signal of a soiling of the emission window based on the interference signal determined during a mechanical excitation of the emission window.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: September 13, 2022
    Assignees: TRUMPF PHOTONIC COMPONENTS GMBH, ROBERT BOSCH GMBH
    Inventors: Petrus Theodorus Jutte, Okke Ouweltjes, Soren Sofke, Johannes Hendrikus Maria Spruit
  • Patent number: 11428819
    Abstract: The invention describes a laser sensor or laser sensor module (100) using self-mixing interference for particle density detection, a related method of particle density detection and a corresponding computer program product. The invention further relates to devices comprising such a laser sensor or laser sensor module. It is a basic idea of the present invention to detect particles by means of self-mixing interference signals and determine a corresponding particle density. In addition at least a first parameter related to at least one velocity component of a velocity vector of the particles is determined in order to correct the particle density if there is the relative movement between a detection volume and the particles. Such a relative movement may for example be related to a velocity of a fluid transporting the particles (e.g. wind speed). Furthermore, it is possible to determine at least one velocity component of the velocity of the particles based on the self-mixing interference signals.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: August 30, 2022
    Assignee: TRUMPF PHOTONIC COMPONENTS GMBH
    Inventors: Johannes Hendrikus Maria Spruit, Alexander Marc Van Der Lee, Gerben Kooijman, Okke Ouweltjes, Joachim Wilhelm Hellmig, Arnoldus Johannes Martinus Jozeph Ras, Petrus Theodorus Jutte
  • Publication number: 20220087895
    Abstract: According to an aspect, there is provided a wearable device, the wearable device comprising: an inflatable body configured to be mounted to a torso of a user; a first sensing device, wherein the first sensing device comprises a first sensor and a first actuator coupling the first sensor to the inflatable body; and a memory storing computer-readable instructions that, when executed, cause the wearable device to: inflate the inflatable body from a first state of the inflatable body to a second state of the inflatable body; actuate the first actuator from a first state of the first actuator to a second state of the first actuator, wherein actuating the first actuator from the first state of the first actuator to the second state of the first actuator reduces a volume of a first air gap between the torso and the first sensor; and while the inflatable body is in the second state of the inflatable body and the first actuator is in the second state of the first actuator receive a first signal from the first sensor.
    Type: Application
    Filed: August 11, 2021
    Publication date: March 24, 2022
    Inventors: Kiran Hamilton J. Dellimore, Harold Johannes Antonius Brans, Albertus Cornelis Den Brinker, Okke Ouweltjes, Pascal De Graaf, Marco Baragona, Samer Bou Jawde
  • Publication number: 20220075042
    Abstract: A laser sensor module includes a laser diode configured emit a laser beam, an electrical driver configured to supply the laser diode with a driving current to stimulate emission of the laser beam, a detector, and an optical arrangement configured to focus the laser beam to a focus region. The laser diode is arranged to emit the laser beam through the optical arrangement to the focus region. The optical arrangement comprises an emission window. The detector is arranged to determine an interference signal. The laser sensor module comprises a soiling detection unit configured to vary a wavelength of the laser beam with a variation amplitude over a predetermined time period to provide a soiling detection signal indicative of a soiling of the emission window based on an interference signal during the wavelength variation of the laser beam.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 10, 2022
    Inventors: Alexander Marc Van Der Lee, Johannes Hendrikus Maria Spruit, Okke Ouweltjes, Robert Weiss
  • Publication number: 20210228788
    Abstract: A method of monitoring an operation of an electric breast pump (100) using an external smart device (200) is provided. The external smart device (200) comprises a vibration detection unit (210) for detecting vibrations emitted from the breast pump (100). The detected vibrations are analyzed to extract information regarding the operation of the electric breast pump (100). The information comprises at least one of mode of operation and settings of the modes of operation of the breast pump (100). The extracted information can be outputted.
    Type: Application
    Filed: May 20, 2019
    Publication date: July 29, 2021
    Inventors: Yannyk Parulian Julian BOURQUIN, Jonathan Alambra PALERO, Lili-Marjan BOELENS-BROCKHUIS, Okke OUWELTJES, Albertus Cornelis DEN BRINKER, Lucja Elzbieta SEGAAR
  • Patent number: 11054244
    Abstract: A method of measuring a particle density of particles includes emitting, by a laser, a laser beam directed to a mirror, redirecting the laser beam by the mirror with a predetermined periodic movement, and focusing the laser beam to a detection volume by an optical imaging device. The method further includes determining a self mixing interference signal of an optical wave within a laser cavity if the self mixing interference signal is generated by laser light of the laser beam reflected by at least one of the particles and suppressing a false self mixing interference signal for particle detection if the self mixing interference signal is caused by a disturbance in an optical path of the laser beam. The false self mixing signal caused by the disturbance in the optical path of the laser beam is suppressed in a defined range of angles of the mirror during the periodic movement.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: July 6, 2021
    Assignee: TRUMPF PHOTONIC COMPONENTS GMBH
    Inventors: Okke Ouweltjes, Johannes Hendrikus Maria Spruit, Alexander Marc van der Lee, Petrus Theodorus Jutte
  • Publication number: 20210148807
    Abstract: A laser sensor module measures a particle density of particles with a size of less than 20 ?m. The laser sensor module includes: a laser configured to emit a laser beam; a detector; and an optical arrangement. The optical arrangement is configured to focus the laser beam to a focus region. The laser is configured to emit the laser beam through the optical arrangement to the focus region. The optical arrangement has an emission window. The detector is configured to determine an interference signal of an interference of reflected laser light with emitted later light of the laser beam. The laser sensor module is configured to provide an indication signal of a soiling of the emission window based on the interference signal determined during a mechanical excitation of the emission window.
    Type: Application
    Filed: December 18, 2020
    Publication date: May 20, 2021
    Inventors: Petrus Theodorus Jutte, Okke Ouweltjes, Soren Sofke, Johannes Hendrikus Maria Spruit
  • Patent number: 10980624
    Abstract: A toothbrush (10) includes a brushhead (18), a first force sensor (30A) for measuring a first force exerted by the brushhead at a first angle relative to a tooth and a second force sensor (30B) for measuring a second force exerted by the brushhead at a second angle relative to the tooth, the second angle being different than the first angle, and a processing unit (26). The processing unit is structured to: (i) receive first information indicative of the first force as measured by the first force sensor, (ii) receive second information indicative of the second force as measured by the second force sensor, and (iii) determine information regarding a current brushing angle of the brushhead based on the first information and the second information.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 20, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mark Thomas Johnson, Johannes Hendrikus Maria Spruit, Okke Ouweltjes, Edgar Martinus Van Gool, Menno Willem Jose Prins
  • Publication number: 20210007704
    Abstract: There is provided an apparatus (100) for detecting subjects with disordered breathing. The apparatus (100) comprises one or more processors (102) configured to acquire an acoustic signal from an acoustic sensor (108) in an environment, determine a plurality of acoustic signal components from the acquired acoustic signal and determine a plurality of signal envelopes or energy signals based on the acoustic signal components. One or more processors (102) are also configured to analyze the determined plurality of signal envelopes or energy signals to detect whether there are one or more subjects in the environment with disordered breathing.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 14, 2021
    Inventors: ALBERTUS CORNELIS DEN BRINKER, OKKE OUWELTJES, KORAY KARAKAYA
  • Publication number: 20200173904
    Abstract: The invention relates to a method for detecting particles, having the steps of: receiving (S1) a measurement signal; calculating (S2) at least one estimated noise value using the received measurement signal; and detecting (S3) the particles using the measurement signal on the basis of at least one detection criterion, wherein the at least one detection criterion depends on the at least one calculated estimated noise value.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 4, 2020
    Inventors: Robert Wolf, Alexander Van Der Lee, Rico Srowik, Hans Spruit, Okke Ouweltjes
  • Publication number: 20200113514
    Abstract: A method of characterizing a patient's disordered breathing during a sleeping period includes performing a first partial characterization of a time axis of an audio signal in order to learn the most prominent and highly relevant events. Only at a later stage, i.e., after sufficient observation of the highly relevant events, is a full segmentation of the entire time axis actually carried out. Linear prediction is used to create an excitation signal that is employed to provide better segmentation than would be possible using the original audio signal alone. Warped linear prediction or Laguerre linear prediction is employed to create an accurate spectral representation with flexibility in the details provided in different frequency ranges. A resonance probability function is generated to further characterize the signals in order to identify disordered breathing. An output includes a characterization in any of a variety of forms of identified disordered breathing.
    Type: Application
    Filed: December 26, 2017
    Publication date: April 16, 2020
    Inventors: Albertus Cornelis DEN BRINKER, Okke OUWELTJES, Armin Gerhard KOHLRAUSCH, Koray KARAKAYA
  • Publication number: 20200093424
    Abstract: A method of characterizing a patient's disordered breathing during a sleeping period includes performing a first partial characterization of a time axis of an audio signal in order to learn the most prominent and highly relevant events. Only at a later stage, i.e., after sufficient observation of the highly relevant events, is a full segmentation of the entire time axis actually carried out. Linear prediction is used to create an excitation signal that is employed to provide better segmentation than would be possible using the original audio signal alone. Warped linear prediction or Laguerre linear prediction is employed to create an accurate spectral representation with flexibility in the details provided in different frequency ranges. A resonance probability function is generated to further characterize the signals in order to identify disordered breathing. An output includes a characterization in any of a variety of forms of identified disordered breathing.
    Type: Application
    Filed: December 22, 2017
    Publication date: March 26, 2020
    Inventors: Albertus Cornelis DEN BRINKER, Okke OUWELTJES, Armin Gerhard KOHLRAUSCH
  • Publication number: 20200096314
    Abstract: A method of measuring a particle density of particles includes emitting, by a laser, a laser beam directed to a mirror, redirecting the laser beam by the mirror with a predetermined periodic movement, and focusing the laser beam to a detection volume by an optical imaging device. The method further includes determining a self mixing interference signal of an optical wave within a laser cavity if the self mixing interference signal is generated by laser light of the laser beam reflected by at least one of the particles and suppressing a false self mixing interference signal for particle detection if the self mixing interference signal is caused by a disturbance in an optical path of the laser beam. The false self mixing signal caused by the disturbance in the optical path of the laser beam is suppressed in a defined range of angles of the mirror during the periodic movement.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 26, 2020
    Inventors: Okke Ouweltjes, Johannes Hendrikus Maria Spruit, Alexander Marc van der Lee, Petrus Theodorus Jutte
  • Publication number: 20190343453
    Abstract: A method of characterizing a patient's disordered breathing during a sleeping period includes performing a first partial characterization of a time axis of an audio signal in order to learn the most prominent and highly relevant events. Only at a later stage, i.e., after sufficient observation of the highly relevant events, is a full segmentation of the entire time axis actually carried out. Linear prediction is used to create an excitation signal that is employed to provide better segmentation than would be possible using the original audio signal alone. Warped linear prediction or Laguerre linear prediction is employed to create an accurate spectral representation with flexibility in the details provided in different frequency ranges. A resonance probability function is generated to further characterize the signals in order to identify disordered breathing. An output includes a characterization in any of a variety of forms of identified disordered breathing.
    Type: Application
    Filed: December 27, 2017
    Publication date: November 14, 2019
    Inventors: Albertus Cornelis DEN BRINKER, Okke OUWELTJES, Armin Gerhard KOHLRAUSCH
  • Publication number: 20190285753
    Abstract: The invention describes a laser sensor or laser sensor module (100) using self-mixing interference for particle density detection, a related method of particle density detection and a corresponding computer program product. The invention further relates to devices comprising such a laser sensor or laser sensor module. It is a basic idea of the present invention to detect particles by means of self-mixing interference signals and determine a corresponding particle density. In addition at least a first parameter related to at least one velocity component of a velocity vector of the particles is determined in order to correct the particle density if there is the relative movement between a detection volume and the particles. Such a relative movement may for example be related to a velocity of a fluid transporting the particles (e.g. wind speed). Furthermore, it is possible to determine at least one velocity component of the velocity of the particles based on the self-mixing interference signals.
    Type: Application
    Filed: May 12, 2017
    Publication date: September 19, 2019
    Inventors: JOHANNES HENDRIKUS MARIA SPRUIT, ALEXANDER MARC VAN DER LEE, GERBEN KOOIJMAN, OKKE OUWELTJES, JOACHIM WILHELM HELLMIG, ARNOLDUS JOHANNES MARTINUS JOZEPH RAS, PETRUS THEODORUS JUTTE
  • Patent number: 10376224
    Abstract: A system for analysis of the upper airway has at least two sensors are provided along a flow path leading to the mouth and/or nose of a user. A relation is derived between the two sensor signals, and this is interpreted to detect at least the presence of upper airway obstructions, and preferably also the location and/or extent of such obstructions.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: August 13, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ronaldus Maria Aarts, Joachim Kahlert, Michel Paul Barbara Van Bruggen, Okke Ouweltjes
  • Patent number: 10379028
    Abstract: The invention describes a laser sensor module (100) which is adapted to detect or determine at least two different physical parameters by means of self-mixing interference by focusing a laser beam to different positions. Such a laser sensor module (100) may be used as an integrated sensor module, for example, in mobile devices (250). The laser sensor module (100) may be used as an input device and in addition as a sensor for detecting physical parameters in an environment of the mobile communication device (250). One physical parameter in the environment of the mobile communication device (250) may, for example, be the concentration of particles in the air (air pollution, smog . . . ). The invention further describes a related method and computer program product.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 13, 2019
    Assignee: PHILIPS PHOTONICS GMBH
    Inventors: Johannes Hendrikus Maria Spruit, Alexander Marc Van Der Lee, Gerben Kooijman, Okke Ouweltjes, Joachim Wilhelm Hellmig, Arnoldus Johannes Martinus Jozeph Ras, Petrus Theodorus Jutte
  • Patent number: 10365197
    Abstract: An optical particle sensor has at least first and second threshold settings applied to an optical sensor or a sensor signal to obtain first and second optical sensor readings. The first and second optical sensor readings are processed to determine a parameter which is dependent on a type of pollution event. The parameter is used to determine from at least one of the first and second optical sensor readings a mass of all particles below a first particle size. In this way the mass of all particles below a desired size can be evaluated, even though the optical sensor may not be responsive to the smallest particles.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: July 30, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michiel Johannes Jongerius, Gerben Kooijman, Koray Karakaya, Okke Ouweltjes
  • Patent number: 10188203
    Abstract: An oral cleaning system provides motivating feedback to a user before brushing and includes: a power toothbrush (10); one or more sensors (26) on or within the toothbrush; a processor (30) within the toothbrush configured to process sensor information obtained from the one or more sensors during a first brushing session of a user; and a feedback system (40) on or within the toothbrush responsive to the processor and configured to communicate brushing information to the user at a time subsequent to the first brushing session but before a second brushing session of the user.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: January 29, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Edgar Martinus Van Gool, Mark Thomas Johnson, Steven Charles Deane, Johannes Hendrikus Maria Spruit, Amir Hussein Rmaile, Pieter Horstman, Okke Ouweltjes