Patents by Inventor Olaf Wunnicke

Olaf Wunnicke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9410839
    Abstract: A method and apparatus for measuring the rate of flow of an ion-containing fluid in a channel are disclosed herein. The apparatus includes a captive sensor operable to detect changes in capacitance value due to the deflection of the ions in the fluid by a magnetic field, and a processor operable to determine a flow speed of fluid from the detected change in capacitance value and a predetermined value of magnetic field strength. Such apparatus may be implemented using CMOS technology. The apparatus may operate in a magnetic field generated by a permanent magnet and measure the flow reliably.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: August 9, 2016
    Assignee: NXP B.V.
    Inventors: Friso Jedema, Casper van der Avoort, Stephan Heil, Kim Phan Le, Olaf Wunnicke
  • Patent number: 9383282
    Abstract: A MEMS pressure sensor wherein at least one of the electrode arrangements comprises an inner electrode and an outer electrode arranged around the inner electrode. The capacitances associated with the inner electrode and the outer electrode are independently measured and can be differentially measured. This arrangement enables various different read out schemes to be implemented and also enables improved compensation for variations between devices or changes in device characteristics over time.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: July 5, 2016
    Assignee: AMS INTERNATIONAL AG
    Inventors: Willem Frederik Adrianus Besling, Klaus Reimann, Peter Steeneken, Olaf Wunnicke, Reinout Woltjer
  • Patent number: 9331028
    Abstract: Substrate material is oxidized around side walls of a set of channels. A shielding structure means there is more oxide growth at the top than the bottom with the result that the non-oxidized substrate material area between the channels forms a tapered shape with a pointed tip at the top. These pointed substrate areas are then used to form cathodes.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: May 3, 2016
    Assignee: NXP B.V.
    Inventors: Michael In 'T Zandt, Olaf Wunnicke, Klaus Reimann
  • Patent number: 9236734
    Abstract: The invention provides a method of forming an electric field gap device, such as a lateral field emission ESD protection structure, in which a cathode layer is formed between dielectric layers. Anode channels are formed and they are lined with a sacrificial dielectric layer. Conductive anode pillars are formed in the anode channels, and then the sacrificial dielectric layer is etched away in the vicinity of the anode pillars. The etching leaves a suspended portion of the cathode layer which defines a lateral gap to an adjacent anode pillar. This portion has a sharp end face defined by the corners of the cathode layer and the lateral gap can be defined accurately as it corresponds to the thickness of the sacrificial dielectric layer.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 12, 2016
    Assignee: NXP B.V.
    Inventors: Michael in 't Zandt, Klaus Reimann, Olaf Wunnicke
  • Publication number: 20160003923
    Abstract: A differential magnetic field sensor system (10) is provided, in which offset cancelling for differential semiconductor structures in magnetic field sensors arranged close to each other is realized. The system (10) comprises a first, a second and a third magnetic field sensor (100, 200, 300), each of which is layouted substantially identically and comprises a, preferably silicon-on-insulator (SOI), surface layer portion (102) provided as a surface portion on a, preferably SOI, wafer and having a surface (104).
    Type: Application
    Filed: June 16, 2015
    Publication date: January 7, 2016
    Inventors: Victor Zieren, Olaf Wunnicke, Klaus Reimann
  • Patent number: 9190237
    Abstract: Embodiments of a method for forming a field emission diode for an electrostatic discharge device include forming a first electrode, a sacrificial layer, and a second electrode. The sacrificial layer separates the first and second electrodes. The method further includes forming a cavity between the first and second electrode by removing the sacrificial layer. The cavity separates the first and second electrodes. The method further includes depositing an electron emission material on at least one of the first and second electrodes through at least one access hole after formation of the first and second electrodes. The access hole is located remotely from a location of electron emission on the first and second electrode.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: November 17, 2015
    Assignee: NXP B.V.
    Inventors: Klaus Reimann, Olaf Wunnicke, Michael in 't Zandt
  • Publication number: 20150311024
    Abstract: Embodiments of a method for forming a field emission diode for an electrostatic discharge device include forming a first electrode, a sacrificial layer, and a second electrode. The sacrificial layer separates the first and second electrodes. The method further includes forming a cavity between the first and second electrode by removing the sacrificial layer. The cavity separates the first and second electrodes. The method further includes depositing an electron emission material on at least one of the first and second electrodes through at least one access hole after formation of the first and second electrodes. The access hole is located remotely from a location of electron emission on the first and second electrode.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Applicant: NXP B.V.
    Inventors: Klaus Reimann, Olaf Wunnicke, Michael in 't Zandt
  • Patent number: 9016133
    Abstract: Various embodiments relate to a pressure sensor and related methods of manufacturing and use. A pressure sensor may include an electrical contact included in a flexible membrane that deflects in response to a measured ambient pressure. The electrical contact may be separated from a signal path through a cavity formed using a sacrificial layer and PVD plugs. At one or more defined touch-point pressure thresholds, the membrane of the pressure sensor may deflect so that the state of contact between an electrical contact and one or more sections of a signal path may change. In some embodiments, the change of state may cause the pressure sensor to trigger an alarm in the electrical circuit. Various embodiments also enable the operation of the electrical circuit for testing and calibration through the use of one or more actuation electrode layers.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: April 28, 2015
    Assignee: NXP, B.V.
    Inventors: William Frederick Adrianus Besling, Peter Gerard Steeneken, Olaf Wunnicke
  • Patent number: 8981442
    Abstract: A semiconductor magnetic field sensor comprising a semiconductor well on top of a substrate layer is disclosed. The semiconductor well includes a first current collecting region and a second current collecting region and a current emitting region placed between the first current collecting region and the second current collecting region. The semiconductor well also includes a first MOS structure, having a first gate terminal, located between the first current collecting region and the current emitting region and a second MOS structure, having a second gate terminal, located between the current emitting region and the second current collecting region. In operation, the first gate terminal and the second gate terminal are biased for increasing a deflection length of a first current and of a second current. The deflection length is perpendicular to a plane defined by a surface of the semiconductor magnetic field sensor and parallel to a magnetic field.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: March 17, 2015
    Assignee: NXP B.V.
    Inventors: Victor Zieren, Anco Heringa, Olaf Wunnicke, Jan Slotboom, Robert Hendrikus Margaretha van Veldhoven, Jan Claes
  • Patent number: 8962453
    Abstract: A process for forming a single crystal layer of one material type such as III-V semiconductor) onto a substrate of a different material type such as silicon. A substrate of a first material type is provided. At least one discrete region of catalyst material is deposited onto the substrate, the discrete region defining a seed area of the substrate. A second material type such as III-V semiconductor is grown as a single crystal nanowire onto the substrate between the substrate and catalyst material, the nanowire of second material type extending upward from the substrate with lateral dimensions not substantially exceeding the seed area. After growth of the nanowire, growth conditions are changed so as to epitaxially grow the second material type laterally from the single crystal nanowire in a direction parallel to the substrate surface.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Olaf Wunnicke, Lars Magnus Tarlé Borgstrom, Vijayaraghavan Madakasira
  • Publication number: 20150001671
    Abstract: Substrate material is oxidised around side walls of a set of channels. A shielding structure means there is more oxide growth at the top than the bottom with the result that the non-oxidised substrate material area between the channels forms a tapered shape with a pointed tip at the top. These pointed substrate areas are then used to form cathodes.
    Type: Application
    Filed: June 2, 2014
    Publication date: January 1, 2015
    Applicant: NXP B.V.
    Inventors: Michael IN 'T ZANDT, Olaf WUNNICKE, Klaus REIMANN
  • Publication number: 20150002966
    Abstract: The invention provides a method of forming an electric field gap device, such as a lateral field emission ESD protection structure, in which a cathode layer is formed between dielectric layers. Anode channels are formed and they are lined with a sacrificial dielectric layer. Conductive anode pillars are formed in the anode channels, and then the sacrificial dielectric layer is etched away in the vicinity of the anode pillars. The etching leaves a suspended portion of the cathode layer which defines a lateral gap to an adjacent anode pillar. This portion has a sharp end face defined by the corners of the cathode layer and the lateral gap can be defined accurately as it corresponds to the thickness of the sacrificial dielectric layer.
    Type: Application
    Filed: June 11, 2014
    Publication date: January 1, 2015
    Inventors: Michael In 't Zandt, Klaus Reimann, Olaf Wunnicke
  • Publication number: 20140366641
    Abstract: Flow sensors for measuring the flow of an ion-containing fluid may be implemented using mechanical or electrical techniques. Mechanical flow sensors are have moving parts and therefore may be unreliable after some time and are expensive to manufacture. Hall-effect type flow sensors typically require a reversible magnetic field to compensate for electrochemical effects. A flow meter including such a sensor uses an electromagnet. A flow sensor (100) is described using a capacitive sensor (10) and processor (12) to determine the flow rate from a change in capacitance and a magnetic field. Such a flow sensor may be implemented using CMOS technology. The flow sensor may operate in a magnetic field generated by a permanent magnet and measure the flow reliably.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 18, 2014
    Inventors: Friso Jedema, Casper van der Avoort, Stephan Heil, Kim Phan Le, Olaf Wunnicke
  • Patent number: 8847466
    Abstract: The present invention relates to a piezoelectric bimorph switch, specifically a cantilever (single clamped beam) switch, which can be actively opened and closed. Piezoelectric bimorph switch are known from the prior art. Such a switch may be regarded as an actuator. Actuators are regarded as a subdivision of transducers. They are devices, which transform an input signal (mainly an electrical signal) into motion. Electrical motors, pneumatic actuators, hydraulic pistons, relays, comb drive, piezoelectric actuators, thermal bimorphs, Digital Micromirror Devices and electroactive polymers are some examples of such actuators. The switch of the invention comprises piezoelectric stack layers (121, 122), which form a symmetrical stack, wherein an electric field is always applied in the same direction as the poling direction of the piezoelectric layers.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 30, 2014
    Assignee: NXP B.V.
    Inventors: Olaf Wunnicke, Klaus Reimann
  • Patent number: 8833171
    Abstract: As may be consistent with one or more embodiments discussed herein, an integrated circuit apparatus includes a membrane suspended over a cavity, with the membrane and cavity defining a chamber. The membrane has a plurality of openings therein that pass gas into and out of the chamber. As the membrane is actuated, the volume of the chamber changes to generate a gas pressure inside the chamber that is different than a pressure outside the chamber. A sensor detects a frequency-based characteristic of the membrane responsive to the change in volume, and therein provides an indication of the gas pressure outside the chamber.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 16, 2014
    Assignee: NXP, B.V.
    Inventors: Willem Frederik Adrianus Besling, Peter Gerard Steeneken, Olaf Wunnicke
  • Publication number: 20140175528
    Abstract: A semiconductor magnetic field sensor comprising a semiconductor well on top of a substrate layer is disclosed. The semiconductor well includes a first current collecting region and a second current collecting region and a current emitting region placed between the first current collecting region and the second current collecting region. The semiconductor well also includes a first MOS structure, having a first gate terminal, located between the first current collecting region and the current emitting region and a second MOS structure, having a second gate terminal, located between the current emitting region and the second current collecting region. In operation, the first gate terminal and the second gate terminal are biased for increasing a deflection length of a first current and of a second current. The deflection length is perpendicular to a plane defined by a surface of the semiconductor magnetic field sensor and parallel to a magnetic field.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 26, 2014
    Applicant: NXP B.V.
    Inventors: Victor Zieren, Anco Heringa, Olaf Wunnicke, Jan Slotboom, Robert Hendrikus Margaretha van Veldhoven, Jan Claes
  • Publication number: 20140053651
    Abstract: As may be consistent with one or more embodiments discussed herein, an integrated circuit apparatus includes a membrane suspended over a cavity, with the membrane and cavity defining a chamber. The membrane has a plurality of openings therein that pass gas into and out of the chamber. As the membrane is actuated, the volume of the chamber changes to generate a gas pressure inside the chamber that is different than a pressure outside the chamber. A sensor detects a frequency-based characteristic of the membrane responsive to the change in volume, and therein provides an indication of the gas pressure outside the chamber.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Inventors: Willem Frederik Adrianus Besling, Peter Gerard STEENEKEN, Olaf Wunnicke
  • Publication number: 20130338956
    Abstract: A governing circuit for a magneto-transistor is disclosed. The magneto-transistor comprising a first and second collector. At least one emitter and at least one base. The governing circuit is configured to measure a first calibration current at the first collector of the magneto-transistor and a second calibration current at the second collector of the magneto-transistor, while a calibration base-emitter voltage is applied to the magneto-transistor. The magneto-transistor is also configured to measure a first measurement current at the first collector of the magneto-transistor and a second measurement current at the second collector of the magneto-transistor, while a measurement base-emitter voltage is applied to the magneto-transistor, wherein the measurement base-emitter voltage is different form the calibration base-emitter voltage and determine an output signal indicative of an applied magnetic field using the measured first and second measurement current and first and second calibration currents.
    Type: Application
    Filed: February 29, 2012
    Publication date: December 19, 2013
    Applicant: NXP B.V.
    Inventors: Victor Zieren, Robert Hendrikus Margaretha Van Veledhoven, Olaf Wunnicke, Hans Paul Tuinhout
  • Publication number: 20130233086
    Abstract: A pressure sensor measures pressure by measuring the deflection of a MEMS membrane using a capacitive read-out method. There are two ways to implement the invention. One involves the use of an integrated Pirani sensor and the other involves the use of an integrated resonator, to function as a reference pressure sensor, for measuring an internal cavity pressure.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 12, 2013
    Applicant: NXP B. V.
    Inventors: Willem Frederik Adrianus Besling, Martijn Goossens, Jozef Thomas Martinus van Beek, Peter Gerard Steenken, Olaf Wunnicke
  • Patent number: 8513745
    Abstract: A MEMS switch (1, 81), and methods of fabricating thereof, the switch comprising: a sealed cavity (24); and a membrane (26); wherein the sealed cavity (24) is defined in part by the membrane (26); and the membrane is a 5 metallic membrane (26), for example consisting of a single type of metal or metal alloy. The MEMS switch (1, 81) may comprise a top electrode (30), for example extending into the cavity (24), located in a hole (32) in the metallic membrane (26). Fabrication may include providing a sacrificial layer (22) in a partly defined cavity (24). The bending stiffness of the membrane (26) may be 10 higher along an RF line (102) than along a line (104) perpendicular to the RF line (102), for example by virtue of the cavity (24) being elliptical.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: August 20, 2013
    Assignee: NXP B.V.
    Inventors: Peter Gerard Steeneken, Hilco Suy, Martijn Goossens, Olaf Wunnicke