Patents by Inventor Oleg Golonzka

Oleg Golonzka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105453
    Abstract: Techniques are provided herein to form semiconductor devices that include one or more gate cuts having a very high aspect ratio (e.g., an aspect ratio of 5:1 or greater, such as 10:1). In an example, a semiconductor device includes a conductive material that is part of a transistor gate structure around or otherwise on a semiconductor region. The semiconductor region can be, for example, a fin of semiconductor material that extends between a source region and a drain region, or one or more nanowires or nanoribbons of semiconductor material that extend between a source region and a drain region. The gate structure may be interrupted between two transistors with a gate cut that extends through an entire thickness of the gate structure. A particular plasma etching process may be performed to form the gate cut with a very high height-to-width aspect ratio so as to enable densely integrated devices.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Reza Bayati, Matthew J. Prince, Alison V. Davis, Ramy Ghostine, Piyush M. Sinha, Oleg Golonzka, Swapnadip Ghosh, Manish Sharma
  • Publication number: 20240071831
    Abstract: An integrated circuit includes laterally adjacent first and second devices. The first device includes a first source or drain region, a first gate structure, and a first inner spacer between the first source or drain region and the first gate structure. The second device includes a second source or drain region, a second gate structure, and a second inner spacer between the second source or drain region and the second gate structure. In an example, the first source or drain region has a width that is at least 1 nanometer different from a width of the second source or drain region, and/or the first inner spacer has a width that is at least 1 nanometer different from a width of the second inner spacer.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 29, 2024
    Applicant: INTEL CORPORATION
    Inventors: Chang Wan Han, Biswajeet Guha, Vivek Thirtha, William Hsu, Ian Yang, Oleg Golonzka, Kevin J. Fischer, Suman Dasgupta, Sameerah Desnavi, Deepak Sridhar
  • Patent number: 11908856
    Abstract: Gate-all-around structures having devices with source/drain-to-substrate electrical contact are described. An integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures is at first and second ends of the first vertical arrangement of horizontal nanowires. One or both of the first pair of epitaxial source or drain structures is directly electrically coupled to the first fin. A second vertical arrangement of horizontal nanowires is above a second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures is at first and second ends of the second vertical arrangement of horizontal nanowires. Both of the second pair of epitaxial source or drain structures is electrically isolated from the second fin.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Publication number: 20240055497
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI, Kalyan KOLLURU, Nathan JACK, Nicholas THOMSON, Ayan KAR, Benjamin ORR
  • Publication number: 20240038889
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Ayan KAR, Nicholas THOMSON, Benjamin ORR, Nathan JACK, Kalyan KOLLURU, Tahir GHANI
  • Publication number: 20240006504
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI
  • Patent number: 11837641
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 5, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Publication number: 20230387121
    Abstract: A wrap-around source/drain trench contact structure is described. A plurality of semiconductor fins extend from a semiconductor substrate. A channel region is disposed in each fin between a pair of source/drain regions. An epitaxial semiconductor layer covers the top surface and sidewall surfaces of each fin over the source/drain regions, defining high aspect ratio gaps between adjacent fins. A pair of source/drain trench contacts are electrically coupled to the epitaxial semiconductor layers. The source/drain trench contacts comprise a conformal metal layer and a fill metal. The conformal metal layer conforms to the epitaxial semiconductor layers. The fill metal comprises a plug and a barrier layer, wherein the plug fills a contact trench formed above the fins and the conformal metal layer, and the barrier layer lines the plug to prevent interdiffusion of the conformal metal layer material and plug material.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Joseph STEIGERWALD, Tahir GHANI, Oleg GOLONZKA
  • Patent number: 11824116
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Ayan Kar, Nicholas Thomson, Benjamin Orr, Nathan Jack, Kalyan Kolluru, Tahir Ghani
  • Publication number: 20230360972
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Patent number: 11799009
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani
  • Publication number: 20230326860
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 12, 2023
    Inventors: Bernhard SELL, Oleg GOLONZKA
  • Patent number: 11776959
    Abstract: A wrap-around source/drain trench contact structure is described. A plurality of semiconductor fins extend from a semiconductor substrate. A channel region is disposed in each fin between a pair of source/drain regions. An epitaxial semiconductor layer covers the top surface and sidewall surfaces of each fin over the source/drain regions, defining high aspect ratio gaps between adjacent fins. A pair of source/drain trench contacts are electrically coupled to the epitaxial semiconductor layers. The source/drain trench contacts comprise a conformal metal layer and a fill metal. The conformal metal layer conforms to the epitaxial semiconductor layers. The fill metal comprises a plug and a barrier layer, wherein the plug fills a contact trench formed above the fins and the conformal metal layer, and the barrier layer lines the plug to prevent interdiffusion of the conformal metal layer material and plug material.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Joseph Steigerwald, Tahir Ghani, Oleg Golonzka
  • Patent number: 11770979
    Abstract: A memory device includes a bottom electrode, a conductive layer such as an alloy including ruthenium and tungsten above the bottom electrode and a perpendicular magnetic tunnel junction (pMTJ) on the conductive layer. In an embodiment, the pMTJ includes a fixed magnet, a tunnel barrier above the fixed magnet and a free magnet on the tunnel barrier. The memory device further includes a synthetic antiferromagnetic (SAF) structure that is ferromagnetically coupled with the fixed magnet to pin a magnetization of the fixed magnet. The conductive layer has a crystal texture which promotes high quality FCC <111> crystal texture in the SAF structure and improves perpendicular magnetic anisotropy of the fixed magnet.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Daniel Ouellette, Justin Brockman, Tofizur Rahman, Angeline Smith, Andrew Smith, Christopher Wiegand, Oleg Golonzka
  • Patent number: 11756829
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Patent number: 11737368
    Abstract: A memory device includes a first electrode, a conductive layer including iridium above the first electrode and a magnetic junction directly on the conductive layer. The magnetic junction further includes a pinning structure above the conductive layer, a fixed magnet above the pinning structure, a tunnel barrier on the fixed magnet, a free magnet on the tunnel barrier layer and a second electrode above the free magnet. The conductive layer including iridium and the pinning structure including iridium provide switching efficiency.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Daniel Ouellette, Christopher Wiegand, Justin Brockman, Tofizur Rahman, Oleg Golonzka, Angeline Smith, Andrew Smith, James Pellegren, Michael Robinson, Huiying Liu
  • Patent number: 11721630
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Oleg Golonzka
  • Publication number: 20230197818
    Abstract: Methods, integrated circuit devices, and systems are discussed related to combining source and drain etch, cavity spacer formation, and source and drain semiconductor growth into a single lithographic processing step in gate-all-around transistors. Such combined processes are performed separately for NMOS and PMOS gate-all-around transistors by implementing selective masking techniques. The resulting transistor structures have improved cavity spacer integrity and contact to gate isolation.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Nitesh Kumar, William Hsu, Mohammad Hasan, Ritesh Das, Vivek Thirtha, Biswajeet Guha, Oleg Golonzka
  • Patent number: 11621395
    Abstract: A memory apparatus includes an interconnect in a first dielectric above a substrate and a structure above the interconnect, where the structure includes a diffusion barrier material and covers the interconnect. The memory apparatus further includes a resistive random-access memory (RRAM) device coupled to the interconnect. The RRAM device includes a first electrode on a portion of the structure, a stoichiometric layer having a metal and oxygen on the first electrode, a non-stoichiometric layer including the metal and oxygen on the stoichiometric layer. A second electrode including a barrier material is on the non-stoichiometric layer. In some embodiments, the RRAM device further includes a third electrode on the second electrode. To prevent uncontrolled oxidation during a fabrication process a spacer may be directly adjacent to the RRAM device, where the spacer includes a second dielectric.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Nathan Strutt, Albert Chen, Pedro Quintero, Oleg Golonzka
  • Patent number: 11616192
    Abstract: A memory device includes a perpendicular magnetic tunnel junction (pMTJ) stack, between a bottom electrode and a top electrode. In an embodiment, the pMTJ includes a fixed magnet, a tunnel barrier above the fixed magnet and a free magnet structure on the tunnel barrier. The free magnet structure includes a first free magnet on the tunnel barrier and a second free magnet above the first free magnet, wherein at least a portion of the free magnet proximal to an interface with the free magnet includes a transition metal. The free magnet structure having a transition metal between the first and the second free magnets advantageously improves the switching efficiency of the MTJ, while maintaining a thermal stability of at least 50 kT.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Tofizur Rahman, Christopher J. Wiegand, Justin S. Brockman, Daniel G. Ouellette, Angeline K. Smith, Andrew Smith, Pedro A. Quintero, Juan G. Alzate-Vinasco, Oleg Golonzka