Patents by Inventor Olin J. Palmer

Olin J. Palmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8708933
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: April 29, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James M. Jacob, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 8308660
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 13, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John F. Schreiner, James M. Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. B. Stalker, Olin J. Palmer
  • Publication number: 20110230840
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 7972283
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 5, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Wayne E. Cornish, John F. Schreiner, James M. Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. B. Stalker, Olin J. Palmer
  • Patent number: 7878985
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: February 1, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Publication number: 20090062773
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Application
    Filed: March 12, 2008
    Publication date: March 5, 2009
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 7494474
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under fluoroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: February 24, 2009
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Patent number: 7455646
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under flouroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: November 25, 2008
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Publication number: 20080146967
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under fluoroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Application
    Filed: July 31, 2003
    Publication date: June 19, 2008
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Patent number: 7179273
    Abstract: An extraction device for the removal of clots and foreign bodies from vasculature. The extractor device is connected to an elongate mandrel and is located within a longitudinally extending lumen defined by a catheter. A clot or foreign material extracted from a vessel by moving the extraction device and catheter proximally until the clot or foreign material does not perfuse a critical organ.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: February 20, 2007
    Assignee: Endovascular Technologies, Inc.
    Inventors: Olin J. Palmer, Katherine Hancock, legal representative, Larry Voss, Christopher G. M. Ken, David Hancock, deceased
  • Patent number: 6953472
    Abstract: An intrasaccular device particularly adapted for treating body lumens. The intrasaccular device includes structure that provides a strong framework as well as improved covering across an opening to an aneurysm sac. The intrasaccular device is intended to retain foreign bodies within the aneurysm sac and includes members for accomplishing this objective. The intrasaccular device is also provided with structure that facilitates the alignment of a plurality of devices deployed within the sac.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: October 11, 2005
    Assignee: Endovascular Technologies, Inc.
    Inventors: Olin J. Palmer, Jeff Krolik
  • Publication number: 20040059259
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 25, 2004
    Applicant: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 6673025
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under flouroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: January 6, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Patent number: 6666829
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 23, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark Richardson, Kent C. Stalker, Olin J. Palmer
  • Publication number: 20030199919
    Abstract: An intrasaccular device particularly adapted for treating body lumens. The intrasaccular device includes structure that provides a strong framework as well as improved covering across an opening to an aneurysm sac. The intrasaccular device is intended to retain foreign bodies within the aneurysm sac and includes members for accomplishing this objective. The intrasaccular device is also provided with structure that facilitates the alignment of a plurality of devices deployed within the sac.
    Type: Application
    Filed: June 9, 2003
    Publication date: October 23, 2003
    Inventors: Olin J. Palmer, Jeff Krolik
  • Patent number: 6589265
    Abstract: An intrasaccular device particularly adapted for treating body lumens. The intrasaccular device includes structure that provides a strong framework as well as improved covering across an opening to an aneurysm sac. The intrasaccular device is intended to retain foreign bodies within the aneurysm sac and includes members for accomplishing this objective. The intrasaccular device is also provided with structure that facilitates the alignment of a plurality of devices deployed within the sac.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: July 8, 2003
    Assignee: Endovascular Technologies, Inc.
    Inventors: Olin J. Palmer, Jeff Krolik
  • Patent number: 6458139
    Abstract: An extraction device for the removal of clots and foreign bodies from vasculature. The extractor device is connected to an elongate mandrel and is located within a longitudinally extending lumen defined by a catheter. A clot or foreign material extracted from a vessel by moving the extraction device and catheter proximally until the clot or foreign material does not perfuse a critical organ.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: October 1, 2002
    Assignee: Endovascular Technologies, Inc.
    Inventors: Olin J. Palmer, David Hancock, Larry Voss, Christopher G. M. Ken