Patents by Inventor Owen LOH

Owen LOH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210167182
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Seung Hoon SUNG, Ashish Verma PENUMATCHA, Sou-Chi CHANG, Devin MERRILL, I-Cheng TUNG, Nazila HARATIPOUR, Jack T. KAVALIEROS, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Chia-Ching LIN, Owen LOH, Shriram SHIVARAMAN, Eric Charles MATTSON
  • Publication number: 20200312949
    Abstract: A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200312950
    Abstract: A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200312978
    Abstract: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Jack KAVALIEROS, Ian YOUNG, Matthew METZ, Uygar AVCI, Chia-Ching LIN, Owen LOH, Seung Hoon SUNG, Aditya KASUKURTI, Sou-Chi CHANG, Tanay GOSAVI, Ashish Verma PENUMATCHA
  • Publication number: 20200312976
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh
  • Publication number: 20200287017
    Abstract: A gate stack is described that uses anti-ferroelectric material (e.g., Si, La, N, Al, Zr, Ge, Y doped HfO2) or ferroelectric material (e.g., Si, La, N, Al, Zr, Ge, Y doped HfO2, perovskite ferroelectric such as NH4H2PO4, KH2PO4, LiNb03, LiTaO3, BaTiO3, PbTiO3, Pb (Zr,Ti) O3, (Pb,La)TiO3, and (Pb,La)(Zr,Ti)O3) which reduces write voltage, improves endurance, and increases retention. The gate stack of comprises strained anti-FE or FE material and depolarized anti-FE or FE. The endurance of the FE transistor is further improved by using a higher K (constant) dielectric (e.g., SiO2, Al2O3, HfO2, Ta2O3, La2O3) in the gate stack. High K effects may also be achieved by depolarizing the FE or FE oxide in the transistor gate stack.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Sou-Chi CHANG, Chia-Chang LIN, Seung Hoon SUNG, Ashish Verma PENUMATCHA, Nazila HARATIPOURA, Owen LOH, Jack KAVALIEROS, Uygar AVCI, Ian YOUNG