Patents by Inventor Pankaj B. Shah

Pankaj B. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9960249
    Abstract: A method of substantially offsetting polarization charges in an electronic device having a heterobarrier comprising providing a substrate; providing at least one pair of stacks of semiconductor materials; one of the pair of stacks having one or more of spontaneous and piezoelectric polarity where the total polarization charge is opposite to the other of the pair of stacks; whereby due to the opposing polarities, the polarization is balanced and the pair of stacks operate to store electrical energy.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: May 1, 2018
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B Shah
  • Patent number: 9893155
    Abstract: Embodiments of the present invention are directed to semiconductor electronic devices formed of 2-D van der Waals material whose free charge carrier concentration is determined by adjacent semiconductor's polarization. According to one particular embodiment, a semiconductor electronic device is composed of one or more layers of two dimensional (2-D) van der Waals (VDW) material; and one or more layers of polarized semiconductor material adjacent to the one or more layer of 2-D VDW material. The polarization of the adjacent semiconductor material establishes the free carrier charge concentration of the 2-D VDW material.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 13, 2018
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B Shah
  • Publication number: 20170141194
    Abstract: Embodiments of the present invention are directed to semiconductor electronic devices formed of 2-D van der Waals material whose free charge carrier concentration is determined by adjacent semiconductor's polarization. According to one particular embodiment, a semiconductor electronic device is composed of one or more layers of two dimensional (2-D) van der Waals (VDW) material; and one or more layers of polarized semiconductor material adjacent to the one or more layer of 2-D VDW material. The polarization of the adjacent semiconductor material establishes the free carrier charge concentration of the 2-D VDW material.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 18, 2017
    Inventor: Pankaj B. Shah
  • Publication number: 20150325676
    Abstract: A method of substantially offsetting polarization charges in an electronic device having a heterobarrier comprising providing a substrate; providing at least one pair of stacks of semiconductor materials; one of the pair of stacks having one or more of spontaneous and piezoelectric polarity where the total polarization charge is opposite to the other of the pair of stacks; whereby due to the opposing polarities, the polarization is balanced and the pair of stacks operate to store electrical energy.
    Type: Application
    Filed: July 17, 2015
    Publication date: November 12, 2015
    Applicant: U.S. ARMY RESEARCH LABORATORY ATTN: RDRL-LOC-I
    Inventor: PANKAJ B. SHAH
  • Patent number: 9166068
    Abstract: An electronic device comprising a substrate; a pair of stacks of polar semiconductor materials which create a charge by spontaneous and/or piezoelectric polarization; one of the pair of stacks having a spontaneous and/or piezoelectric polarity which is in a direction opposite to the other of the pair of stacks; whereby due to the opposing polarities, the polarization is balanced. A method of substantially eliminating the bias required to offset polarization charges in an electronic device having a heterobarrier comprising providing a substrate; growing at least one pair of stacks of semiconductor materials; one of the pair of stacks having a spontaneous and/or piezoelectric polarity which is opposite to the other of the pair of stacks; whereby due to the opposing polarities, the polarization is balanced to substantially eliminate the need for a voltage bias.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: October 20, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Patent number: 9117937
    Abstract: A varactor comprising two Schottky diodes, each diode comprising a substrate and a plurality of layers formed on the substrate including at least one GaN layer and at least one semi-insulating material layer formed of a material with an energy gap greater than 3.5 and free carrier mobility less than 300 cm2/V-s; the Schottky diodes having cathodes adapted to be connected to an AC voltage input and being configured so that as the AC voltage applied to the cathodes increases the capacitance decreases nonlinearly, the nonlinear transition from high capacitance to low capacitance being adjustable by utilizing the intrinsic carrier concentration of the semi-insulating layer to obtain an optimal nonlinear transition for the predetermined AC voltage applied to the cathodes. A method of making a varactor comprising computer modeling to produce capacitance-voltage curves, modifying at least one semi-insulating region, and modeling power input/output efficiency for a predetermined input signal.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: August 25, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Pankaj B. Shah, H. Alfred Hung
  • Publication number: 20140327016
    Abstract: A varactor comprising two Schottky diodes, each diode comprising a substrate and a plurality of layers formed on the substrate including at least one GaN layer and at least one semi-insulating material layer formed of a material with an energy gap greater than 3.5 and free carrier mobility less than 300 cm2/V-s; the Schottky diodes having cathodes adapted to be connected to an AC voltage input and being configured so that as the AC voltage applied to the cathodes increases the capacitance decreases nonlinearly, the nonlinear transition from high capacitance to low capacitance being adjustable by utilizing the intrinsic carrier concentration of the semi-insulating layer to obtain an optimal nonlinear transition for the predetermined AC voltage applied to the cathodes. A method of making a varactor comprising computer modeling to produce capacitance-voltage curves, modifying at least one semi-insulating region, and modeling power input/output efficiency for a predetermined input signal.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 6, 2014
    Inventors: PANKAJ B. SHAH, H. ALFRED HUNG
  • Patent number: 8796082
    Abstract: A preferred method of optimizing a Ga-nitride device material structure for a frequency multiplication device comprises: determining the amplitude and frequency of the input signal being multiplied in frequency; providing a Ga-nitride region on a substrate; determining the Al percentage composition and impurity doping in an AlGaN region positioned on the Ga-nitride region based upon the power level and waveform of the input signal and the desired frequency range in order to optimize power input/output efficiency; and selecting an orientation of N-face polar GaN or Ga-face polar GaN material relative to the AlGaN/GaN interface so as to orient the face of the GaN so as to optimize charge at the AlGaN/GaN interface. A preferred embodiment comprises an anti-serial Schottky varactor comprising: two Schottky diodes in anti-serial connection; each comprising at least one GaN layer designed based upon doping and thickness to improve the conversion efficiency.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 5, 2014
    Assignee: The United States of America as represented by the Scretary of the Army
    Inventors: Pankaj B. Shah, H. Alfred Hung
  • Publication number: 20130292683
    Abstract: An electronic device comprising a substrate; a pair of stacks of polar semiconductor materials which create a charge by spontaneous and/or piezoelectric polarization; one of the pair of stacks having a spontaneous and/or piezoelectric polarity which is in a direction opposite to the other of the pair of stacks; whereby due to the opposing polarities, the polarization is balanced. A method of substantially eliminating the bias required to offset polarization charges in an electronic device having a heterobarrier comprising providing a substrate; growing at least one pair of stacks of semiconductor materials; one of the pair of stacks having a spontaneous and/or piezoelectric polarity which is opposite to the other of the pair of stacks; whereby due to the opposing polarities, the polarization is balanced to substantially eliminate the need for a voltage bias.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventor: PANKAJ B. SHAH
  • Publication number: 20130207119
    Abstract: A low-defect gallium nitride structure including a first gallium nitride layer comprising a plurality of gallium nitride columns etched into the first gallium nitride layer and a first dislocation density; and a second gallium nitride layer that extends over the gallium nitride columns and comprises a second dislocation density, wherein the second dislocation density may be lower than the first dislocation density. In addition, a method for fabricating a gallium nitride semiconductor layer that includes masking an underlying gallium nitride layer with a mask that comprises an array of columns and growing the underlying gallium nitride layer through the columns and onto said mask using metal-organic chemical vapor deposition pendeo-epitaxy to thereby form a pendeo-epitaxial gallium nitride layer coalesced on said mask to form a continuous pendeo-epitaxial monocrystalline gallium nitride semiconductor layer.
    Type: Application
    Filed: August 7, 2012
    Publication date: August 15, 2013
    Applicant: The Government of the United States as Represented by the Secretary of the Army
    Inventors: Tsvetanka S. Zheleva, Pankaj B. Shah, Michael A. Derenge
  • Patent number: 8314016
    Abstract: A low-defect gallium nitride structure including a first gallium nitride layer comprising a plurality of gallium nitride columns etched into the first gallium nitride layer and a first dislocation density; and a second gallium nitride layer that extends over the gallium nitride columns and comprises a second dislocation density, wherein the second dislocation density may be lower than the first dislocation density. In addition, a method for fabricating a gallium nitride semiconductor layer that includes masking an underlying gallium nitride layer with a mask that comprises an array of columns and growing the underlying gallium nitride layer through the columns and onto said mask using metal-organic chemical vapor deposition pendeo-epitaxy to thereby form a pendeo-epitaxial gallium nitride layer coalesced on said mask to form a continuous pendeo-epitaxial monocrystalline gallium nitride semiconductor layer.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 20, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Tsvetanka S. Zheleva, Pankaj B. Shah, Michael A. Derenge, Daniel J. Ewing
  • Patent number: 7851274
    Abstract: A structure and method for a silicon carbide (SiC) gate turn-off (GTO) thyristor device operable to provide an increased turn-off gain comprises a cathode region, a drift region having an upper portion and a lower portion, wherein the drift region overlies the cathode region, a gate region overlying the drift region, an anode region overlying the gate, and at least one ohmic contact positioned on each of the gate region, anode region, and cathode region, wherein the upper portion of the drift region, the gate region, and the anode region have a free carrier lifetime and mobility lower than a comparable SiC GTO thyristor for providing the device with an increased turn-off gain, wherein the free carrier lifetime is approximately 10 nanoseconds. The reduced free carrier lifetime and mobility are affected by altering the growth conditions, such as temperature under which epitaxy occurs.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: December 14, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Publication number: 20100171124
    Abstract: A low-defect gallium nitride structure including a first gallium nitride layer comprising a plurality of gallium nitride columns etched into the first gallium nitride layer and a first dislocation density; and a second gallium nitride layer that extends over the gallium nitride columns and comprises a second dislocation density, wherein the second dislocation density may be lower than the first dislocation density. In addition, a method for fabricating a gallium nitride semiconductor layer that includes masking an underlying gallium nitride layer with a mask that comprises an array of columns and growing the underlying gallium nitride layer through the columns and onto said mask using metal-organic chemical vapor deposition pendeo-epitaxy to thereby form a pendeo-epitaxial gallium nitride layer coalesced on said mask to form a continuous pendeo-epitaxial monocrystalline gallium nitride semiconductor layer.
    Type: Application
    Filed: June 19, 2009
    Publication date: July 8, 2010
    Applicant: The United States of America as represented by the Secretary of the Army
    Inventors: Tsvetanka S. Zheleva, Pankaj B. Shah, Michael A. Derenge, Daniel J. Ewing
  • Publication number: 20090233414
    Abstract: A method of manufacturing a transistor comprises providing a wafer; growing a group III-nitride semiconductor material on a first side of the wafer; creating alignment marks on a second side of the wafer, the second side of the wafer being positioned opposite to the first side of the wafer; etching the first side of the wafer to create free standing walls on the first side of the wafer; growing pendeo-epitaxy regrowth regions on the free standing walls; and forming mesa isolated regions in the pendeo-epitaxy regrowth regions. The method may further comprise positioning a patterned mask on the first side of the wafer; and aligning the patterned mask with the alignment marks located on the second side of the wafer.
    Type: Application
    Filed: October 20, 2005
    Publication date: September 17, 2009
    Inventors: Pankaj B. Shah, Michael Andrew Derenge
  • Patent number: 7304363
    Abstract: A technique of spreading current flowing in a semiconductor device comprising an electrode, a drift region adjacent to the electrode, a junction termination extension implant region in the drift region, and a current spreader adjacent to the junction termination extension implant region and the electrode. The current spreader is adapted to reduce current densities and electrostatic fields (preferably simultaneously) in an area connecting the electrode with the drift region. Moreover, the current spreader is adapted to spread current flowing from the electrode into the drift region. The semiconductor device further comprises an ohmic metal contact connected to the electrode and an implant pocket in the drift region, wherein the implant pocket is adapted for terminating electrostatic field lines in the semiconductor device. Preferably, the current spreader comprises an ohmic metal and the electrode comprises any of an anode and a cathode.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: December 4, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Patent number: 6960526
    Abstract: A method of producing a field emission device includes laying a group III-nitride semiconductor layer over a substrate, placing a photoresist mask over the group III-nitride semiconductor layer, patterning a generally circular grid in the photoresist mask and the group III-nitride semiconductor layer, and forming the group III-nitride semiconductor layer into generally pointed tips using an inductively coupled plasma dry etching process, wherein the group III-nitride semiconductor layer comprises a group III-nitride semiconductor material having a low positive electron affinity or a even a negative electron affinity, wherein the inductively coupled plasma dry etching process selectively creates an anisotropic deep etch in the group III-nitride semiconductor layer, and wherein the inductively coupled plasma dry etching process creates an isotropic etch in the group III-nitride semiconductor layer. Preferably, the photoresist layer is approximately 1.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Patent number: 6900477
    Abstract: A structure and method for a silicon carbide (SiC) gate turn-off (GTO) thyristor device operable to provide an increased turn-off gain comprises a cathode region, a drift region having an upper portion and a lower portion, wherein the drift region overlies the cathode region, a gate region overlying the drift region, an anode region overlying the gate, and at least one ohmic contact positioned on each of the gate region, anode region, and cathode region, wherein the upper portion of the drift region, the gate region, and the anode region have a free carrier lifetime and mobility lower than a comparable SiC GTO thyristor for providing the device with an increased turn-off gain, wherein the free carrier lifetime is approximately 10 nanoseconds. The reduced free carrier lifetime and mobility are affected by altering the growth conditions, such as temperature under which epitaxy occurs.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: May 31, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Patent number: 6734462
    Abstract: A structure and method for a voltage blocking device comprises a cathode region, a drift region positioned on the cathode region, a gate region positioned on the drift region, an anode region positioned on the gate region and a plurality of contacts positioned on each of the cathode region, the gate region, and the anode region, wherein the drift region comprises multiple epilayers having first doped type layers surrounding second doped type layers, wherein dopant concentrations of the first doped type layers are lower than dopant concentrations of the second doped type layers. The epilayers comprise at least one i-n-i layer and/or at least one i-p-i layer. Moreover, the multiple epilayers are operable to block voltages in the device.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: May 11, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Patent number: 6703642
    Abstract: A SiC gate turn-off (GTO) thyristor that exhibits improved greatly performance includes a p-type anode region, a n-type gated base region positioned beneath the anode region, a n-type drift region positioned beneath the gated base region and doped to a lower concentration of donors than that of the gated base region, a p-type buffer region positioned beneath the n-type drift region and doped with acceptors to a concentration whose magnitude lies between the doping concentration of the anode region and the drift region, and an n-type substrate positioned beneath the buffer region. In another aspect of the invention of this application, a silicon or silicon carbide gate-turn-off thyristor includes a GTO thyristor structure with a thick buffer layer having a high, free-carrier recombination rate.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: March 9, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah
  • Patent number: 6501099
    Abstract: A gate turn-off thyristor includes a substrate formed of n-type silicon carbide; a growth buffer formed of n-type silicon carbide and positioned to overlie said substrate; a field buffer region formed of p-type silicon carbide and positioned to overlie said growth buffer; a drift region formed of p-type silicon carbide and positioned to overlie said field buffer region; a gated base region formed of n-type silicon carbide and positioned to overlie said drift region; a modified anode region formed of first, second and third layers of silicon carbide and positioned to overlie said gated base region, said first layer comprising p-type silicon carbide and disposed adjacent said gated base region, said second layer comprising n-type silicon carbide and disposed adjacent said first layer, said third layer comprising p-type silicon carbide and disposed adjacent said second layer; an anode contact disposed on said third layer of said modified anode region; a cathode contact disposed on said substrate; and a gate cont
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: December 31, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pankaj B. Shah