Patents by Inventor Parag Jitendra Parikh

Parag Jitendra Parikh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10265543
    Abstract: A treatment planning system for generating patient-specific treatment. The system including one or more processors programmed to receive a radiation treatment plan (RTP) for irradiating a target over the course of one or more treatment fractions, said RTP including a planned dose distribution to be delivered to the target, receive motion data for at least one of the treatment fractions of the RTP, receive temporal delivery metric data for at least one of the treatment fractions of the RTP, calculate a motion-compensated dose distribution for the target using the motion data and the temporal delivery metric data to adjust the planned dose distribution based on the received motion data and temporal delivery metric data, and compare the motion-compensated dose distribution to the planned dose distribution.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 23, 2019
    Assignees: KONINKLIJKE PHILIPS N.V., WASHINGTON UNIVERSITY
    Inventors: Shyam Bharat, Mingyao Zhu, Parag Jitendra Parikh, Karl Antonin Bzdusek
  • Patent number: 10182869
    Abstract: Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: January 22, 2019
    Assignee: Elwha LLC
    Inventors: Mahalaxmi Gita Bangera, Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Stephen L. Malaska, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene, Sharon L. Wolda, Lowell L. Wood, Jr.
  • Patent number: 10143809
    Abstract: Systems and methods are described herein for guided injection, which include: one or more controllable light-emitting elements configured to emit non-destructive light and a computing device operably connected to the one or more controllable light-emitting elements configured to emit non-destructive light, the computing device including a processor operable to receive at least one digital representation of a body region of an individual, the body region of the individual including one or more physical registration landmarks, the at least one digital representation including one or more digitally registered injection sites and one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region; and control the one or more controllable light-emitting elements to illuminate a location of a surface of the body region of the individual corresponding in location to at least one of the one or more digitally registered injection sites.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 4, 2018
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Patent number: 10052159
    Abstract: Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 21, 2018
    Assignee: Elwha LLC
    Inventors: Mahalaxmi Gita Bangera, Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Stephen L. Malaska, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene, Sharon L. Wolda, Lowell L. Wood, Jr.
  • Patent number: 10046119
    Abstract: System and methods are described herein for generating an injection guide, which include receiving one or more digital images of a body region of an individual, the body region including one or more physical registration landmarks, generating at least one digital representation of the body region using the one or more digital images, the at least one digital representation including one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region, adding one or more digitally registered injection sites to the at least one digital representation of the body region in an injection-treatment pattern, the one or more digitally registered injection sites registered relative to the one or more digital registration landmarks, and generating one or more output signals having information for controlling one or more controllable light-emitting elements to illuminate a location on a surface of the body region of the individual corresponding in location to at
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 14, 2018
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Patent number: 10034743
    Abstract: Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the plurality of sensor modules oriented to detect one or more analytes in a fluid adjacent to the shell, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 31, 2018
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Publication number: 20170259013
    Abstract: System and methods are described herein for generating an injection guide, which include receiving one or more digital images of a body region of an individual, the body region including one or more physical registration landmarks, generating at least one digital representation of the body region using the one or more digital images, the at least one digital representation including one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region, adding one or more digitally registered injection sites to the at least one digital representation of the body region in an injection-treatment pattern, the one or more digitally registered injection sites registered relative to the one or more digital registration landmarks, and generating one or more output signals having information for controlling one or more controllable light-emitting elements to illuminate a location on a surface of the body region of the individual corresponding in location to at
    Type: Application
    Filed: March 30, 2017
    Publication date: September 14, 2017
    Inventors: Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Patent number: 9744379
    Abstract: A treatment planning system (106) for generating patient-specific treatment margins. The system (106) includes one or more processors (142). The processors (142) are programmed to receive a radiation treatment plan (RTP) for irradiating a target (122) over the course of one or more treatment fractions. The RTP including one or more treatment margins around the target (122) and a planned dose distribution for the target (122). The processors (142) are further programmed to receive motion data for at least one of the treatment fractions of the RTP from one or more target surrogates (124), calculate a motion-compensated dose distribution for the target (122) using the motion data and the planned dose distribution, compare the motion-compensated dose distribution to the planned dose distribution, and adjust the treatment margins based on dosimetric differences between the motion-compensated dose distribution and the planned dose distribution.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 29, 2017
    Assignees: KONINKLIJKE PHILIPS N.V., WASHINGTON UNIVERSITY
    Inventors: Shyam Bharat, Karl Antonin Bzdusek, Parag Jitendra Parikh, Camille Elizabeth Noel
  • Publication number: 20170151394
    Abstract: Systems and methods are described herein for guided injection, which include: one or more controllable light-emitting elements configured to emit non-destructive light and a computing device operably connected to the one or more controllable light-emitting elements configured to emit non-destructive light, the computing device including a processor operable to receive at least one digital representation of a body region of an individual, the body region of the individual including one or more physical registration landmarks, the at least one digital representation including one or more digitally registered injection sites and one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region; and control the one or more controllable light-emitting elements to illuminate a location of a surface of the body region of the individual corresponding in location to at least one of the one or more digitally registered injection sites.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 1, 2017
    Inventors: Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Patent number: 9629963
    Abstract: System and methods are described herein for generating an injection guide, which include receiving one or more digital images of a body region of an individual, the body region including one or more physical registration landmarks, generating at least one digital representation of the body region using the one or more digital images, the at least one digital representation including one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region, adding one or more digitally registered injection sites to the at least one digital representation of the body region in an injection-treatment pattern, the one or more digitally registered injection sites registered relative to the one or more digital registration landmarks, and generating one or more output signals having information for controlling one or more controllable light-emitting elements to illuminate a location on a surface of the body region of the individual corresponding in location to at
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 25, 2017
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Patent number: 9550029
    Abstract: Systems and methods are described herein for guided injection, which include: one or more controllable light-emitting elements configured to emit non-destructive light and a computing device operably connected to the one or more controllable light-emitting elements configured to emit non-destructive light, the computing device including a processor operable to receive at least one digital representation of a body region of an individual, the body region of the individual including one or more physical registration landmarks, the at least one digital representation including one or more digitally registered injection sites and one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region; and control the one or more controllable light-emitting elements to illuminate a location of a surface of the body region of the individual corresponding in location to at least one of the one or more digitally registered injection sites.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: January 24, 2017
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Publication number: 20160242853
    Abstract: Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 25, 2016
    Inventors: Mahalaxmi Gita Bangera, Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Stephen L. Malaska, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene, Sharon L. Wolda, Lowell L. Wood, JR.
  • Publication number: 20160235929
    Abstract: Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 18, 2016
    Inventors: Mahalaxmi Gita Bangera, Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Stephen L. Malaska, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene, Sharon L. Wolda, Lowell L. Wood, JR.
  • Patent number: 9398955
    Abstract: Prosthetic artificial joints are described, including hip, knee and shoulder joints.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: July 26, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9398954
    Abstract: Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, a artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; and a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: July 26, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9387080
    Abstract: Artificial joint prosthetic components including synovial fluid deflection structures are described. Embodiments of artificial joint prosthesis include those with: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis; and at least one fluid deflection structure positioned on the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: July 12, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9387081
    Abstract: Artificial joint prostheses, including hip, knee and shoulder joints, are described. In some aspects, an artificial joint prosthesis includes: a bone-facing surface of an artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure attached to the non-contact surface, the fluid deflection structure positioned to direct a flow of synovial fluid away from the bone-prosthesis interface in vivo; and at least one particle retaining structure positioned to contact the directed flow of synovial fluid and configured to retain particles present within the synovial fluid.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: July 12, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9358350
    Abstract: Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: June 7, 2016
    Assignee: Elwha LLC
    Inventors: Mahalaxmi Gita Bangera, Edward S. Boyden, Hon Wah Chin, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Stephen L. Malaska, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene, Sharon L. Wolda, Lowell L. Wood, Jr.
  • Patent number: 9339372
    Abstract: Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of projections extending from an external surface of the shell, the projections forming a plurality of compartments adjacent to the external surface of the shell; at least one fluid-permeable cover attached to the projections, the cover completely enveloping the shell and the plurality of projections; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the sensor modules oriented to detect one or more analytes in a fluid within one of the plurality of compartments, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: May 17, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene
  • Patent number: 9333071
    Abstract: Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of projections extending from an external surface of the shell, the projections forming a plurality of compartments adjacent to the external surface of the shell; at least one fluid-permeable cover attached to the projections, the cover completely enveloping the shell and the plurality of projections; a plurality of sensor modules attached to the shell, each of the sensor modules oriented to detect one or more analytes in a fluid within one of the plurality of compartments, wherein each of the plurality of sensor modules includes a unique identifier; and at least one power source operably attached to the plurality of sensor modules.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: May 10, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene