Patents by Inventor Patrick Giordano

Patrick Giordano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7878407
    Abstract: A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging station for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs. wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV of the image sensing array.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 1, 2011
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7845559
    Abstract: A hand-supportable digital image capture and processing system including a hand-supportable housing having an imaging window. A printed circuit (PC) board is mounted in the hand-supportable housing, and has front and rear surfaces and a light transmission aperture formed centrally therethrough. An image formation and detection subsystem has image formation optics for projecting a field of view (FOV) through the imaging window and upon an object within the FOV, and an area-type image detection array for forming and detecting 2D digital images of the object during object illumination and imaging operations. A first FOV folding mirror is supported above the rear surface of the PC board over the light transmission aperture, and a second FOV folding mirror is supported above the rear surface of the PC board and over the area-type image detection array. These mirrors fold and project the FOV through the light transmission aperture and the imaging window.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 7, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 7845561
    Abstract: A digital image capture and processing system including a housing having an imaging window; and an image formation and detection subsystem supporting a periodic snap shot mode of the operation. The system includes image formation optics for projecting a field of view (FOV) through said imaging window and upon an object within the FOV, and forming an image of the object on an area-type image detection array having a plurality of rows of image detection elements, and detecting 2D digital images of the object while object illumination and imaging operations. The system also includes an LED-based illumination subsystem, with a LED illumination array, for producing a field of narrow-band illumination within the FOV, and illuminating the object detected in the FOV, so that the illumination reflects off the object and is transmitted back through the light transmission aperture and onto the image detection array to form the 2D digital image of the object.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 7, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 7841533
    Abstract: A method of capturing processing digital images of an object, using a hand-supportable digital image capture and processing system having a trigger switch, an imaging window and a field of view (FOV) projected therethrough and onto an area-type image detection array. The method involves automatically detecting an object within the FOV, and generating a first trigger event indicative of automatic object detection within the FOV. In response to the generation of the first trigger event signal, the object targeting illumination subsystem automatically generates and projects a visible targeting illumination beam within the FOV. The human operator aligns the visible targeting illumination beam with the object in the FOV, and then manually actuates the trigger switch to generate a second trigger event signal.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: November 30, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 7832643
    Abstract: A hand-supportable planar laser illumination and imaging (PLIIM) based code symbol reader includes: a hand-supportable housing having light transmission aperture; a linear image formation and detection module having a linear image detection array; and a planar laser illumination beam (PLIB) producing device having at least one visible laser diode (VLD) for producing a planar light illumination beam (PLIB). The code symbol reader further includes image grabber for grabbing digital linear images formed and detected by the image formation and detection module, an image data buffer for buffering the digital linear images grabbed by the image grabber and constructing a two-dimensional image from a series of buffered linear digital images, and an image processing computer for processing the buffered two-dimensional digital image so as to read code symbols graphically represented in the two-dimensional digital linear image.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 16, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 7806335
    Abstract: A digital image capturing and processing system for automatically recognizing objects in a POS environment. The system includes a system housing having an imaging window; illumination and imaging stations for generating and projecting illumination and imaging planes or zones through the imaging window, and into a 3D imaging volume definable relative to the imaging window, for digital imaging an object passing through the 3D imaging volume, and generating digital linear images of the object as the object intersects the illumination and imaging planes or zones during system operation. A digital image processor processes the digital images and automatically recognizes the object, such as produce and fruit, graphically represented by the digital images.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 5, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7806336
    Abstract: A laser beam generation system having an integrated coherence reduction mechanism. The system includes: a flexible circuit having a first end portion and a second end portion; a laser diode mounted on the first end portion of the flexible circuit, for producing a laser beam having a central characteristic wavelength; diode current drive circuitry for producing a diode drive current to drive the laser diode and produce said laser beam; and high frequency modulation (HFM) circuitry also mounted on the first end portion of the flexible circuit, for modulating the diode drive current at a sufficiently high frequency to cause the laser diode to produce a laser beam having a spectral side-band components about the central characteristic wavelength, and thereby reducing the coherence as well as coherence length of the laser beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 5, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7793841
    Abstract: A laser illumination beam generation system including a laser diode (LD) for producing a laser beam in response to a diode current supplied thereto, wherein the laser beam has a central characteristic wavelength. Diode current drive circuitry generates the diode current and supplies the same to the VLD. A high frequency modulation (HFM) circuitry modulates the diode current supplied to the laser diode, so as to produce a spectral side-band components about the central characteristic wavelength, and thereby reduces the coherence of the laser illumination beam as well as its coherence length. An optical multiplexing (OMUX) device receives the laser beam as an input beam and generates multiple laser beams therefrom and recombines the multiple laser beams so as to produce a composite output laser illumination beam having reduce coherence.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: September 14, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7784695
    Abstract: A planar laser illumination module (PLIM) including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser illumination source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 31, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John A. Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7784698
    Abstract: A digital image capturing and processing system including a system housing having an imaging window; illumination and imaging stations for generating and projecting illumination and imaging planes or zones through the imaging window, and into a 3D imaging volume definable relative to the imaging window, for digital imaging an object passing through the 3D imaging volume, and generating digital linear images of the object as the object intersects the illumination and imaging planes or zones during system operation. A digital image processor processes the digital images and automatically recognizes graphical intelligence (e.g. bar code symbols, alphanumeric characters etc) graphically represented in the digital images.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 31, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7775436
    Abstract: A method of driving a plurality of visible and invisible laser diodes so as to produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power during object illumination and imaging operations. The method involves supplying a plurality of visible laser and invisible laser diodes with a predetermined/default values of diode drive currents so as to illuminate the object with a spectral mixture of illumination during object illumination and imaging operations. One or more digital images of the illuminated object are captured and the image contrast quality thereof is measured, in real-time, so as to generate feedback or control data.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 17, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7770796
    Abstract: A laser beam despeckling device including a laser diode for producing a laser beam having a central characteristic wavelength. The device includes diode current drive circuitry for producing a diode drive current to drive said laser diode and produce said laser beam. High frequency modulation (HFM) circuitry modulates the diode drive current at a sufficiently high frequency to cause said laser diode to produce spectral side-band components about the central characteristic wavelength, and reducing the coherence as well as coherence length of the laser beam. An optical beam multiplexing (OMUX) module is provided for receiving the laser beam as input beam, a generating as output, a plurality of laser beam components that are recombined to produce a composite laser beam having substantially reduced coherence for use in illumination applications where a substantial reduction in speckle pattern noise is achieved.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 10, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7762465
    Abstract: A device for optically multiplexing a laser beam, having a glass plate construction with an input surface and an output surface, and bearing reflective and semi-reflective coatings arranged so as to optically multiplex an input laser beam entering the input surface, into multiple spatial-coherence reduced output laser beams exiting from the output surface. Through such optical multiplexing, and recombination, the coherence of the resulting laser beam is substantially reduced, as is the power of speckle pattern noise observed at an image detection array detecting an image of an object illuminated by said laser beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: July 27, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7731091
    Abstract: A digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging module for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging module includes a spectral-mixing based illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs, wherein the first and second fields of illumination spatially overlap and intermix with each other and produce a composite illumination field that is at least substantially coextensive with the FOV of the image sensing array.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: June 8, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7686225
    Abstract: A wireless code symbol reading system including a wireless hand-supportable code symbol reader in two-way RF communication with a base station operably connected to a host system, by way of an RF-based wireless data communication link having a predetermined RF communication range over which two-way communication of data packets can occur. The wireless hand-supportable code symbol reader is programmed to automatically detect when it is located inside and outside of the predetermined RF communication range. When the wireless reader is inside the RF communication range, then symbol character data is automatically transmitted to the base station, and when the wireless reader is located outside of the RF communication range, then symbol character data is automatically collected and stored in a data packet buffer, until the wireless reader has re-entered its RF communication range.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 30, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Wilz, Sr., Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Min Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Patent number: 7673803
    Abstract: A planar laser illumination and imaging (PLIIM) based engine including; an engine housing having light transmission aperture; an image formation and detection module and having an image detection array and image formation optics with a field of view (FOV) extending from the image detection array, through the light transmission aperture and onto an object moving relative to the engine housing during object illumination and imaging operations; a planar laser illumination beam (PLIB) producing device, and having at least one visible laser illumination source arranged in relation to the image formation and detection module, for producing a planar light illumination beam (PLIB), and projecting the planar light illumination beam through light transmission aperture and oriented such that the plane of the PLIB is coplanar with the field of view of the image formation and detection module so that the object can be simultaneously illuminated by the planar light illumination beam and imaged within the field of view and
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: March 9, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark S. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 7665665
    Abstract: A digital illumination and imaging system employing one or more planar laser illumination modules (PLIMs) each including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence. A digital image detection array for detecting digital images of an object illuminated by the composite substantially planar laser illumination beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 23, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7661597
    Abstract: A coplanar laser illumination and imaging subsystem deployable in an image capturing and processing system, and including an image formation and detection (IFD) subsystem having an image sensing array and optics providing a field of view (FOV) on the image sensing array, and forming an image of an object within the FOV and detecting said image on the image sensing array and producing a digital image thereof. The system includes a spectral-mixing based illumination subsystem having an array of VLDs for producing a visible illumination beam, and an array of infrared (IR) laser diodes (LDs) for producing an invisible illumination beam. The visible and invisible illumination beams spatially overlaps and spatially/temporally intermixes with each other to produce a composite spectrally-mixed illumination beam having a relative power ratio of visible illumination to invisible illumination (VIS/IR), and is substantially coplanar with the FOV of said image sensing array.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 16, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7614560
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at a POS. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: November 10, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7600689
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: October 13, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Allan Wirth, Timothy A. Good, Andrew Jankevics, Steve Y. Kim, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Patrick A. Giordano, Jeffery Yorsz, Mark S. Schmidt, Stephen J. Colavito, David M. Wilz, Sr., Ka Man Au, William Svedas, Sankar Ghosh, Michael D. Schnee, Xiaoxun Zhu, C. Harry Knowles