Patents by Inventor Paul E. Sandin

Paul E. Sandin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9043953
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: June 2, 2015
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Tony L. Campbell, John Bergman
  • Patent number: 9043952
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: June 2, 2015
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Tony L. Campbell, John Bergman
  • Patent number: 9038233
    Abstract: A floor cleaning robot comprises a housing, wheels, and a motor driving the wheels to move the robot across a floor, a control module disposed within the housing and directing movement of the robot across the floor, a sensor for detecting and communicating obstacle information to the control module so that the control module can cause the robot to react to the obstacle, a removable bin disposed at least partially within the housing and receiving particulates, a first rotating member directing particulates toward the bin, and a second rotating member cooperating with the first rotating member to direct particulates toward the bin. The removable bin receives particulates directed thereto by the first and second rotating members and the particulates pass from the first rotating member to the removable bin without passing through a filter.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: May 26, 2015
    Assignee: iRobot Corporation
    Inventors: Joseph L Jones, Newton E Mack, David M Nugent, Paul E Sandin
  • Patent number: 8954192
    Abstract: A method of navigating an autonomous coverage robot between bounded areas includes positioning a navigation beacon in a gateway between adjoining first and second bounded areas. The beacon configured to transmit a gateway marking emission across the gateway. The method also includes placing the coverage robot within the first bounded area. The robot autonomously traverses the first bounded area in a cleaning mode and upon encountering the gateway marking emission in the gateway, the robot remains in the first bounded area, thereby avoiding the robot migration into the second area. Upon termination of the cleaning mode in the first area, the robot autonomously initiates a migration mode to move through the gateway, past the beacon, into the second bounded area.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: February 10, 2015
    Assignee: iRobot Corporation
    Inventors: Daniel N. Ozick, Andrea M. Okerholm, Jeffrey W. Mammen, Michael J. Halloran, Paul E. Sandin, Chikyung Won
  • Patent number: 8950038
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: February 10, 2015
    Assignee: iRobot Corporation
    Inventors: Chikyung Won, Paul E. Sandin, Scott Thomas Burnett, Deepak Ramesh Kapoor, Stephen A. Hickey, Robert Rizzari, Zivthan A. Dubrovsky, Selma Svendsen
  • Patent number: 8954193
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: February 10, 2015
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Tony L. Campbell, John Bergman
  • Publication number: 20150006015
    Abstract: An autonomous coverage robot system includes an active boundary responder comprising a wire powered with a modulated current placed along a perimeter of a property, at least one passive boundary responder placed on a property interior circumscribed by the active boundary responder, and an autonomous coverage robot. The robot includes a drive system carried by a body and configured to maneuver the robot across the property interior. The robot includes a signal emitter emitting a signal, where the passive boundary responder is responsive to the signal and a boundary responder detection system carried by the body. The boundary responder detector is configured to redirect the robot both in response to the responder detection system detecting an active boundary responder and in response to detecting a passive boundary responder.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, JR., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, JR., Tony L. Campbell, John Bergman, Mark J. Chiappetta
  • Patent number: 8915692
    Abstract: An adaptable handling system featuring a boundary subsystem and one or more robots. Each robot typically includes a chassis, a container lift mechanism moveable with respect to the robot chassis for transporting at least one container, a drive subsystem for maneuvering the chassis, a boundary sensing subsystem, a container detection subsystem, and a controller. The controller is responsive to the boundary sensing subsystem and the container detection subsystem and is configured to control the drive subsystem to follow a boundary once intercepted until a container is detected and turn until another container is detected. The controller then controls the container lift mechanism to place a transported container proximate the second detected container.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: December 23, 2014
    Assignee: Harvest Automation, Inc.
    Inventors: Charles M. Grinnell, Joseph L. Jones, Paul E. Sandin, Clara Vu
  • Publication number: 20140352103
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin
  • Publication number: 20140316557
    Abstract: A system is provided for processing container-grown plants positioned in a given area. The system includes a processing station positioned in the area for processing the container-grown plants. It also includes one or more autonomous mobile container handling robots configured to: (i) travel to a source location in the area and pick up a container-grown plant, (ii) transport the container-grown plant to the processing station where a process is performed on the container-grown plant, (iii) transport the container-grown plant from the processing station to a destination location in the area, (iv) deposit the container-grown plant at the destination location, and (v) repeat (i) through (iv) for a set of container-grown plants in the source location.
    Type: Application
    Filed: January 24, 2014
    Publication date: October 23, 2014
    Applicant: Harvest Automation, Inc.
    Inventors: Joseph L. Jones, Clara Vu, Paul E. Sandin, Charles M. Grinnell
  • Patent number: 8868237
    Abstract: An autonomous coverage robot system includes an active boundary responder comprising a wire powered with a modulated current placed along a perimeter of a property, at least one passive boundary responder placed on a property interior circumscribed by the active boundary responder, and an autonomous coverage robot. The robot includes a drive system carried by a body and configured to maneuver the robot across the property interior. The robot includes a signal emitter emitting a signal, where the passive boundary responder is responsive to the signal and a boundary responder detection system carried by the body. The boundary responder detector is configured to redirect the robot both in response to the responder detection system detecting an active boundary responder and in response to detecting a passive boundary responder.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: October 21, 2014
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Jr., Tony L. Campbell, John Bergman, Mark J. Chiappetta
  • Publication number: 20140289992
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Andrew Ziegler, Christopher John Morse, Duane L. Gilbert, JR., Andrew Jones, Scott Pratt, Paul E. Sandin, Nancy Dussault
  • Publication number: 20140250613
    Abstract: An autonomous floor-cleaning robot comprising a housing infrastructure including a chassis, a power subsystem; for providing the energy to power the autonomous floor-cleaning robot, a motive subsystem operative to propel the autonomous floor-cleaning robot for cleaning operations, a command and control subsystem operative to control the autonomous floor-cleaning robot to effect cleaning operations, and a self-adjusting cleaning head subsystem that includes a deck mounted in pivotal combination with the chassis, a brush assembly mounted in combination with the deck and powered by the motive subsystem to sweep up particulates during cleaning operations, a vacuum assembly disposed in combination with the deck and powered by the motive subsystem to ingest particulates during cleaning operations, and a deck adjusting subassembly mounted in combination with the motive subsystem for the brush assembly, the deck, and the chassis that is automatically operative in response to an increase in brush torque in said brush
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: iRobot Corporation
    Inventors: Joseph L. Jones, Newton E. Mack, David M. Nugent, Paul E. Sandin
  • Publication number: 20140249671
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, JR., Daniel N. Ozick
  • Patent number: 8781627
    Abstract: A robot lawmnower includes a body, a drive system carried by the body, at least one caster wheel supporting the body, a grass cutter carried by the body, a controller in communication with the drive system, and a bump sensor in communication with the controller. The controller is configured to maneuver the robot to turn in place and to redirect the robot in response to the bump sensor sensing contact with an obstacle. The drive system is configured to maneuver the robot across a lawn and includes differentially driven right and left drive wheels positioned rearward of a transverse center axis defined by the body. The at least one caster wheel is positioned substantially forward of the right and left drive wheels, and the grass cutter is positioned at least partially forward of the right and left drive wheels and at least partially behind the at least one caster wheel.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: July 15, 2014
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Jr., Tony L. Campbell, John Bergman, Mark J. Chiappetta
  • Patent number: 8763199
    Abstract: A robot includes a robot housing having a substantially arcuate forward portion and a motor drive housed by the robot housing and configured to maneuver the robot on a floor surface. At least two independently driven drive wheels are moveably attached to the robot housing and biased toward the floor surface, each of the drive wheels being moveable downwardly in response to the each of the drive wheels moving over a cliff in the floor surface. A plurality of cliff sensors are disposed adjacent a forward edge of the robot housing and spaced from each other, each cliff sensor including an emitter and a detector aimed toward the floor surface and configured to receive emitter emissions reflected off of the floor surface, each cliff sensor being responsive to a cliff in the floor surface and configured to send a signal when a cliff in the floor surface is detected.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: July 1, 2014
    Assignee: iRobot Corporation
    Inventors: Joseph L. Jones, Newton E. Mack, David M. Nugent, Paul E. Sandin
  • Patent number: 8761931
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: June 24, 2014
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Publication number: 20140102061
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 17, 2014
    Applicant: IROBOT CORPORATION
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, JR., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Tony L. Campbell, John Bergman
  • Publication number: 20140102062
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 17, 2014
    Applicant: IROBOT CORPORATION
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, JR., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Tony L. Campbell, John Bergman
  • Publication number: 20140095008
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 3, 2014
    Applicant: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, JR., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Tony L. Campbell, John Bergman