Patents by Inventor Paul J. Stager

Paul J. Stager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10877160
    Abstract: A method for adjusting an installation orientation of an access point within a predefined area with an associated orientation is disclosed. The method includes obtaining, at a computing apparatus, angle of arrival estimates from each access point based on a wireless transmission from a wireless mobile device. The computing device generates an estimated location of the wireless mobile device based on the angle of arrival estimates. Next, the computing device determines an orientation error for each wireless access point based on the angle of arrival estimate of the wireless mobile device and the estimated location of the wireless mobile device. The computing device generates an adjusted orientation of one or more of the access points based on the orientation error of the access point, thereby aligning the adjusted orientation with the orientation of the predefined area.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 29, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Matthew A. Silverman, Paul J. Stager, Santosh G. Pandey
  • Patent number: 10873947
    Abstract: In one embodiment, a technique for Internet of Things (IoT) device location tracking using midambles is provided. A first wireless device in connection with an antenna array may receive one or more first data symbols of a data payload from a second wireless device using a first antenna state that assigns a radio path, used for location estimation, to a first antenna of the antenna array. Subsequent to identifying a first midamble of the data payload, the first wireless device may change the first antenna state to a second antenna state that assigns the radio path to a second antenna of the antenna array. The first wireless device may receive one or more second data symbols of the data payload using the second antenna state. The first wireless device may determine a location of the second wireless device based on location information determined using the radio path.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: December 22, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Matthew Silverman, Paul J. Stager, Xu Zhang
  • Patent number: 10863465
    Abstract: Techniques are disclosed to synchronize wireless signal transmission by endpoints controlled by a central controller. For example, an example method of wireless communication includes receiving, at a first device, over a wired medium between the first device and a second device, a plurality of packets from the second device. Each of the plurality of packets comprises data representative of a portion of a signal corresponding to a wireless medium. The method further includes receiving, at the first device, from the second device over the wired medium a synchronization signal based on a common master clock at the second device. The method further includes synchronizing, at the first device, a local clock of the first device to the common master clock based on the synchronization signal. The method further includes reconstructing the signal corresponding to the wireless medium based on the plurality of packets and the synchronized local clock.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 8, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Paul J. Stager, David S. Kloper, Brian D. Hart, Matthew A. Silverman
  • Publication number: 20200355779
    Abstract: In one embodiment, a method includes receiving a plurality of radio frequency chains at a wireless device in a block based modulation environment, recording subcarrier phases and differences between the subcarrier phases, and using the subcarrier phase differences to construct a feature vector for use in angle of arrival calculated positioning of a mobile device.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Brian Donald Hart, Paul J. Stager, Santosh Pandey, David Kloper, Dan Lyons, Matthew A. Silverman
  • Publication number: 20200359355
    Abstract: Offloading of location computation from a location server to an access point through the use of projections on base phase vectors may be provided. First, an Access Point (AP) may receive a set of two or more base phase vectors from a location server. Next, the AP may measure a measured phase vector for a first signal from a user device. Then, the AP can determine projection values based on a comparison of the measured phase vector to each base phase vector. From these comparisons, the AP can determine a subset of base phase vectors with the highest projection values. The AP can then send the projection values and the subset of base phase vectors to the location server, wherein the location server determines the device location from these projection values and subset of base phase vectors.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Applicant: Cisco Technology, Inc.
    Inventors: Xu Zhang, Paul J. Stager, Santosh Ghanshyam Pandey, Matthew Aaron Silverman, Abhishek Mukherji
  • Publication number: 20200329452
    Abstract: Offloading of location computation from a location server to an access point through the use of projections on base phase vectors may be provided. First, an Access Point (AP) may receive a set of two or more base phase vectors from a location server. Next, the AP may measure a measured phase vector for a first signal from a user device. Then, the AP can determine projection values based on a comparison of the measured phase vector to each base phase vector. From these comparisons, the AP can determine a subset of base phase vectors with the highest projection values. The AP can then send the projection values and the subset of base phase vectors to the location server, wherein the location server determines the device location from these projection values and subset of base phase vectors.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Applicant: Cisco Technology, Inc.
    Inventors: Xu Zhang, Paul J. Stager, Santosh Ghanshyam Pandey, Matthew Aaron Silverman, Abhishek Mukherji
  • Publication number: 20200326405
    Abstract: Determining a device's location in a space in real time is computing intensive. To offload some of the workload in conducting this hyperlocation, the access points in the network conduct some of process in determining the location of a device. The cloud determines a restricted AoA search area based on previous client locations. After this determination, a three-dimensional (3D) AoA search is conducted by each AP in the restricted area (restricted by a range of azimuth directions) for a device. Finally, each AP reports a location(s) for the device, which comprises weights for selected angular sectors. The cloud can then construct a probability heat map for location computation from the weights provided from each AP for the device.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Applicant: Cisco Technology, Inc.
    Inventors: Matthew Aaron Silverman, Santosh Ghanshyam Pandey, Paul J. Stager, Xu Zhang, Abhishek Mukherji
  • Patent number: 10785744
    Abstract: Offloading of location computation from a location server to an access point through the use of projections on base phase vectors may be provided. First, an Access Point (AP) may receive a set of two or more base phase vectors from a location server. Next, the AP may measure a measured phase vector for a first signal from a user device. Then, the AP can determine projection values based on a comparison of the measured phase vector to each base phase vector. From these comparisons, the AP can determine a subset of base phase vectors with the highest projection values. The AP can then send the projection values and the subset of base phase vectors to the location server, wherein the location server determines the device location from these projection values and subset of base phase vectors.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: September 22, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Xu Zhang, Paul J. Stager, Santosh Ghanshyam Pandey, Matthew Aaron Silverman, Abhishek Mukherji
  • Patent number: 10761177
    Abstract: In one embodiment, an apparatus includes a processor for processing a plurality of radio frequency chains at a wireless device in a block based modulation environment, recording subcarrier phases and differences between the subcarrier phases, and using the subcarrier phase differences to construct a feature vector for use in angle of arrival calculated positioning of a mobile device, and memory for storing the subcarrier phases and the feature vector.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 1, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Brian Donald Hart, Paul J. Stager, Santosh Pandey, David Kloper, Dan Lyons, Matthew A. Sliverman
  • Publication number: 20200275426
    Abstract: In one embodiment, a technique for Internet of Things (IoT) device location tracking using midambles is provided. A first wireless device in connection with an antenna array may receive one or more first data symbols of a data payload from a second wireless device using a first antenna state that assigns a radio path, used for location estimation, to a first antenna of the antenna array. Subsequent to identifying a first midamble of the data payload, the first wireless device may change the first antenna state to a second antenna state that assigns the radio path to a second antenna of the antenna array. The first wireless device may receive one or more second data symbols of the data payload using the second antenna state. The first wireless device may determine a location of the second wireless device based on location information determined using the radio path.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: Matthew Silverman, Paul J. Stager, Xu Zhang
  • Patent number: 10735033
    Abstract: A wireless communication device is built from a base module and a plurality of front-end modules. Each of the plurality of front-end modules is configured to operate a different one of a plurality of radio frequency services and having a front-end module connector configured to removeably mate with a base module connector of the base module. A particular front-end module is connected to the base module. Upon connection of the particular front-end module to the base module connector, the base module reads information from a memory of the particular front-end module to determine the radio service that the particular front-end module is configured to operate and to supply the control signals to configure and control front-end circuitry of the front-end module to operate the radio service.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Fred J. Anderson, Paul J. Stager, John M. Blosco, Qing Zhao, David Kloper
  • Patent number: 10677885
    Abstract: Techniques are presented herein for computing angle-of-arrival estimates while switching antenna states during a packet unit for the general Orthogonal Frequency Division Multiple Access (OFMDA) case (including a single user). A wireless device computes channel estimates throughout the entire frame and not only during the training symbols. Consequently, the wireless device computes channel estimates for all antennas in its array within a single frame instead of having to wait for multiple frames.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 9, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Matthew A. Silverman, Oscar Bejarano Chavez, Paul J. Stager, David Kloper
  • Publication number: 20200136657
    Abstract: A wireless communication device is built from a base module and a plurality of front-end modules. Each of the plurality of front-end modules is configured to operate a different one of a plurality of radio frequency services and having a front-end module connector configured to removeably mate with a base module connector of the base module. A particular front-end module is connected to the base module. Upon connection of said particular front-end module to the base module connector, the base module reads information from a memory of said particular front-end module to determine the radio service that the particular front-end module is configured to operate and to supply the control signals to configure and control front-end circuitry of the front-end module to operate the radio service.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 30, 2020
    Inventors: Fred J. Anderson, Paul J. Stager, John M. Blosco, Qing Zhao, David Kloper
  • Patent number: 10601475
    Abstract: A wireless access point device wirelessly communicates with a plurality of wireless client devices. The wireless access point includes a central processor subsystem and a plurality of transceiver devices each including a plurality of antennas, and a plurality of radio transceivers, each of the plurality of transceiver devices configured for deployment throughout a coverage area, each transceiver device being connected to the central processor subsystem via a respective cable. The central processor subsystem distributes in-phase and quadrature baseband samples across the plurality of transceiver devices associated with traffic to be transmitted and received via the plurality of transceiver devices in one or more frequency bands so as to synthesize a wideband multiple-input multiple-output transmission channel and a wideband multiple-input multiple-output reception channel. The access point transmit and receive functions are “split” or partitioned across the plurality of transceivers devices.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: March 24, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Brian D. Hart, Paul J. Stager, David Kloper, Jie Cheng Jiang
  • Patent number: 10455439
    Abstract: The present disclosure discloses a central controller controlling multiple radio heads (RHs) in a network. The central controller generates network information for the radio heads based on a probe request transmitted from a network device and received by one or more of the radio heads. The central controller calculates a respective metric value for each of the radio heads based on the network information. The metric value indicates a capability of a radio head to serve the network device. The central controller selects a subset of radio heads from the multiple radio heads to send a probe response to the network device based on the metric values.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 22, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: David S. Kloper, Matthew A. Silverman, Paul J. Stager
  • Publication number: 20190280380
    Abstract: An apparatus comprises an antenna array, a block of switches, a programmable logic device and a memory device. The antenna array comprises a plurality of antenna elements. The block of switches is configured to selectively connect respective ones of a subset of the plurality of antenna elements to corresponding ones of a plurality of transceivers in a host device. The programmable logic device is configured to communicate with the host device and to control the block of switches. The memory device is coupled to the programmable logic device, and is configured to store information allowing the host device to determine how to control connectivity of individual antenna elements to respective ones of the plurality of transceivers of the host device as part of transmit and/or receive operations of the host device.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 12, 2019
    Inventors: Stephen J. McCarthy, Matthew A. Silverman, Paul J. Stager
  • Publication number: 20190265367
    Abstract: A method for adjusting an installation orientation of an access point within a predefined area with an associated orientation is disclosed. The method includes obtaining, at a computing apparatus, angle of arrival estimates from each access point based on a wireless transmission from a wireless mobile device. The computing device generates an estimated location of the wireless mobile device based on the angle of arrival estimates. Next, the computing device determines an orientation error for each wireless access point based on the angle of arrival estimate of the wireless mobile device and the estimated location of the wireless mobile device. The computing device generates an adjusted orientation of one or more of the access points based on the orientation error of the access point, thereby aligning the adjusted orientation with the orientation of the predefined area.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Matthew A. Silverman, Paul J. Stager, Santosh G. Pandey
  • Publication number: 20190242970
    Abstract: Techniques are presented herein for computing angle-of-arrival estimates while switching antenna states during a packet unit for the general Orthogonal Frequency Division Multiple Access (OFMDA) case (including a single user). A wireless device computes channel estimates throughout the entire frame and not only during the training symbols. Consequently, the wireless device computes channel estimates for all antennas in its array within a single frame instead of having to wait for multiple frames.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Matthew A. Silverman, Oscar Bejarano Chavez, Paul J. Stager, David Kloper
  • Publication number: 20190245593
    Abstract: A wireless access point device wirelessly communicates with a plurality of wireless client devices. The wireless access point includes a central processor subsystem and a plurality of transceiver devices each including a plurality of antennas, and a plurality of radio transceivers, each of the plurality of transceiver devices configured for deployment throughout a coverage area, each transceiver device being connected to the central processor subsystem via a respective cable. The central processor subsystem distributes in-phase and quadrature baseband samples across the plurality of transceiver devices associated with traffic to be transmitted and received via the plurality of transceiver devices in one or more frequency bands so as to synthesize a wideband multiple-input multiple-output transmission channel and a wideband multiple-input multiple-output reception channel. The access point transmit and receive functions are “split” or partitioned across the plurality of transceivers devices.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Brian D. Hart, Paul J. Stager, David Kloper, Jie Cheng Jiang
  • Publication number: 20190246368
    Abstract: Techniques are disclosed to synchronize wireless signal transmission by endpoints controlled by a central controller. For example, an example method of wireless communication includes receiving, at a first device, over a wired medium between the first device and a second device, a plurality of packets from the second device. Each of the plurality of packets comprises data representative of a portion of a signal corresponding to a wireless medium. The method further includes receiving, at the first device, from the second device over the wired medium a synchronization signal based on a common master clock at the second device. The method further includes synchronizing, at the first device, a local clock of the first device to the common master clock based on the synchronization signal. The method further includes reconstructing the signal corresponding to the wireless medium based on the plurality of packets and the synchronized local clock.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Paul J. STAGER, David S. KLOPER, Brian D. HART, Matthew A. SILVERMAN