Patents by Inventor Paul Le Rolland

Paul Le Rolland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11696777
    Abstract: A surgical system includes a tubular shaft having a wall defining an outer surface and an inner surface disposed about an inner space, the tubular shaft having a proximal end and a distal end. The surgical system also includes at least one light emitter and at least one light sensor disposed at the distal end of the tubular shaft, and one or more leads or conductors electrically coupled to the at least one light emitter or the at least one light sensor. The one or more leads may be disposed in clearances defined by first and second jaws. Alternatively or in addition, the one or more conductors may be formed on a flexible substrate, and the flexible substrate may have a deformed state in which the substrate is disposed in the inner space.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 11, 2023
    Assignee: Briteseed, LLC
    Inventors: Jonathan Gunn, Steve McPhilliamy, Hariharan Subramanian, Paul Le Rolland, Amal Chaturvedi, Keith A. Grider, Daniel J. Greene, Sean Corrigan, Tomas Matusaitis, Marcus Stephen Papadopoulos
  • Publication number: 20230085251
    Abstract: A surgical system used to determine a size of a vessel within a region proximate to a working end of a surgical instrument includes at least one light emitter disposed at the working end, an array of light sensors disposed opposite the at least one light emitter, the array comprising a least one row of light sensors, individual light sensors in the row adapted to generate a signal comprising a pulsatile and a non-pulsatile component, and a controller coupled to the array, the controller comprising a splitter to separate the pulsatile component from the non-pulsatile component, and an analyzer to determine the magnitudes of the pulsatile and non-pulsatile components at the individual light sensors, to determine a first peak magnitude and a second peak magnitude of the pulsatile components, and to determine a resting outer diameter of the vessel based on the first and second peak magnitudes.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 16, 2023
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland
  • Patent number: 11490820
    Abstract: A surgical system used to determine a size of a vessel within a region proximate to a working end of a surgical instrument includes at least one light emitter disposed at the working end, an array of light sensors disposed opposite the at least one light emitter, the array comprising a least one row of light sensors, individual light sensors in the row adapted to generate a signal comprising a pulsatile and a non-pulsatile component, and a controller coupled to the array, the controller comprising a splitter to separate the pulsatile component from the non-pulsatile component, and an analyzer to determine the magnitudes of the pulsatile and non-pulsatile components at the individual light sensors, to determine a first peak magnitude and a second peak magnitude of the pulsatile components, and to determine a resting outer diameter of the vessel based on the first and second peak magnitudes.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: November 8, 2022
    Assignee: Briteseed, LLC
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland
  • Publication number: 20210338260
    Abstract: A surgical system includes a stimulation generator, at least one sensor disposed at a working end of a surgical instrument, and a controller coupled to the at least one sensor. The controller is configured to obtain data from the at least one sensor over time in response to a stimulation applied by the stimulation generator, analyze the data obtained from the at least one sensor over time to generate sensor data analysis results, apply a signal processing method and/or a pattern matching to the sensor data analysis results, and indicate if a tissue or artifact is present within a region proximate to the working end of the surgical instrument based on the signal processing method or pattern matching.
    Type: Application
    Filed: August 19, 2019
    Publication date: November 4, 2021
    Inventors: Paul Le Rolland, Amal Chaturvedi
  • Publication number: 20210068856
    Abstract: A surgical system includes a tubular shaft having a wall defining an outer surface and an inner surface disposed about an inner space, the tubular shaft having a proximal end and a distal end. The surgical system also includes at least one light emitter and at least one light sensor disposed at the distal end of the tubular shaft, and one or more leads or conductors electrically coupled to the at least one light emitter or the at least one light sensor. The one or more leads may be disposed in clearances defined by first and second jaws. Alternatively or in addition, the one or more conductors may be formed on a flexible substrate, and the flexible substrate may have a deformed state in which the substrate is disposed in the inner space.
    Type: Application
    Filed: December 21, 2018
    Publication date: March 11, 2021
    Inventors: Jonathan Gunn, Steve McPhilliamy, Hariharan Subramanian, Paul Le Rolland, Amal Chaturvedi, Keith A. Grider, Daniel J. Greene, Sean Corrigan, Tomas Matusaitis, Marcus Stephen Papadopoulos
  • Publication number: 20200345297
    Abstract: A surgical system includes at least one light emitter generating light at a first intensity and an array of light sensors including a least one row of light sensors, individual light sensors in the row of light sensors adapted to generate a signal including a non-pulsatile component. The system also includes a controller coupled to the array of light sensors, the controller including an analyzer to determine the magnitudes of the non-pulsatile components at the individual light sensors in the row of light sensors, to determine if the non-pulsatile component transitions from a higher magnitude to a lower magnitude and from a lower magnitude to a higher magnitude, and if so, to determine if the first intensity should be changed to a second intensity.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland
  • Patent number: 10716508
    Abstract: A surgical system includes at least one light emitter generating light at a first intensity and an array of light sensors including a least one row of light sensors, individual light sensors in the row of light sensors adapted to generate a signal including a non-pulsatile component. The system also includes a controller coupled to the array of light sensors, the controller including an analyzer to determine the magnitudes of the non-pulsatile components at the individual light sensors in the row of light sensors, to determine if the non-pulsatile component transitions from a higher magnitude to a lower magnitude and from a lower magnitude to a higher magnitude, and if so, to determine if the first intensity should be changed to a second intensity.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 21, 2020
    Assignee: Briteseed, LLC
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland
  • Publication number: 20190046220
    Abstract: A surgical system used to determine the presence of a vessel within a region (102) proximate to a working end (104) of a surgical instrument (106) includes at least one light emitter (110) disposed at the working end (104) of the surgical instrument (106), and at least one light sensor (112) disposed at the working end (104) of the surgical instrument (106) and configured to receive light emitted from the at least one light emitter (110) and reflected from the region (102), the at least one light sensor (112) adapted to generate a signal comprising a first pulsatile component and a second non-pulsatile component.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 14, 2019
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Shetha Shukair, Paul Le Rolland
  • Publication number: 20190038136
    Abstract: A surgical system including a tubular shaft having a wall defining an outer surface and an inner surface disposed about an inner space, the tubular shaft having a proximal end and a distal end. The system also includes a light emitter and a light sensor disposed at the distal end of the tubular shaft, and one or more conductors electrically coupled to the light emitter or the light sensor. The one or more conductors extend from the distal end of the tubular shaft to the proximal end of the shaft, and are disposed radially outward of the inner surface of the tubular shaft.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 7, 2019
    Inventors: Jonathan Gunn, Sean Corrigan, Daniel Joseph Greene, Derek J. Leatzow, Marcus Stephen Papadopoulos, Paul Le Rolland, Tomas Matusaitis
  • Publication number: 20180289315
    Abstract: A surgical system includes at least one light emitter generating light at a first intensity and an array of light sensors including a least one row of light sensors, individual light sensors in the row of light sensors adapted to generate a signal including a non-pulsatile component. The system also includes a controller coupled to the array of light sensors, the controller including an analyzer to determine the magnitudes of the non-pulsatile components at the individual light sensors in the row of light sensors, to determine if the non-pulsatile component transitions from a higher magnitude to a lower magnitude and from a lower magnitude to a higher magnitude, and if so, to determine if the first intensity should be changed to a second intensity.
    Type: Application
    Filed: October 7, 2016
    Publication date: October 11, 2018
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland
  • Publication number: 20180098705
    Abstract: A surgical system used to determine a size of a vessel within a region proximate to a working end of a surgical instrument includes at least one light emitter disposed at the working end, an array of light sensors disposed opposite the at least one light emitter, the array comprising a least one row of light sensors, individual light sensors in the row adapted to generate a signal comprising a pulsatile and a non-pulsatile component, and a controller coupled to the array, the controller comprising a splitter to separate the pulsatile component from the non-pulsatile component, and an analyzer to determine the magnitudes of the pulsatile and non-pulsatile components at the individual light sensors, to determine a first peak magnitude and a second peak magnitude of the pulsatile components, and to determine a resting outer diameter of the vessel based on the first and second peak magnitudes.
    Type: Application
    Filed: February 19, 2016
    Publication date: April 12, 2018
    Inventors: Amal Chaturvedi, Hariharan Subramanian, Jonathan Gunn, Mayank Vijayvergia, Shetha Shukair, Paul Le Rolland