Patents by Inventor Paul M. Meaney

Paul M. Meaney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953485
    Abstract: A system for non-invasive microwave testing a bottle of wine may include an emission probe for emitting a microwave signal through a wall of the bottle into the wine and a detection probe for receiving at least a portion of the microwave signal from the wine via the wall.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 9, 2024
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Timothy Raynolds
  • Publication number: 20210311012
    Abstract: A system for non-invasive microwave testing a bottle of wine may include an emission probe for emitting a microwave signal through a wall of the bottle into the wine and a detection probe for receiving at least a portion of the microwave signal from the wine via the wall.
    Type: Application
    Filed: July 30, 2019
    Publication date: October 7, 2021
    Inventors: Paul M. Meaney, Timothy Raynolds
  • Patent number: 10113979
    Abstract: A system for dielectric testing of wine in a bottle includes (a) a coaxial probe for interrogating the wine, wherein the coaxial probe has an open end for contacting an exterior surface of the bottle, and (b) a measurement module for determining a dielectric property associated with the wine by generating and measuring radio waves propagating through the coaxial cable. A method for dielectric testing of wine in a bottle includes measuring a radio-wave reflection signal associated with the wine by interrogating the wine, through the bottle, with radio waves, and determining a dielectric property associated with the wine from the radio-wave reflection signal. A probe for radio-wave interrogation of wine in a bottle has an inner conductor, an outer conductor, and an open end with curvature matching the curvature of an exterior surface of the bottle.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: October 30, 2018
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Timothy Raynolds
  • Patent number: 9880118
    Abstract: A probe sensor has a printed circuit comprising a coplanar transmission line, a ground plane, a plated-through contact via, and a part-circular ring of ground vias surrounding the contact via. The coplanar transmission line and ground plane are formed on a first layer of the printed circuit, and the contact via and part-circular ring of ground vias are plated with a conductive biocompatible material on a second layer of the printed circuit. A system uses a network analyzer with the probe to measure electrical properties of biological tissue. Also described is a method of using the system to determine qualities of stored blood.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 30, 2018
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Tina Zhou, Andrea Borsic, Alexander T. Farkas, Keith D. Paulsen
  • Patent number: 9786048
    Abstract: A system and method of imaging tissue includes administering a contrast agent having charged gold nanoparticles in suspension into a vessel of the subject, such that the nanoparticles are carried into the tissue; and performing microwave imaging of the tissue after administering the contrast agent. In embodiments, the nanoparticles have a tissue-selective protein tag. In embodiments, images are taken prior to administering the contrast agent, and further images may be taken during an agent—washout period after imaging with contrast agent. The contrast agent is injectable, with the nanoparticles suspended as a colloid in a biocompatible, isotonic, carrier. In particular embodiments, the nanoparticles have median diameter of less than fifty nanometers, or less than five nanometers, and may have a tissue-selective protein tag. A microwave imaging system has injection apparatus with the gold-nanoparticle agent, and is configured to take, and difference, pre and post contrast images as well as washout images.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: October 10, 2017
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Neil Epstein, Keith D. Paulsen
  • Patent number: 9532029
    Abstract: Systems and methods generate a 3D model of a surface of an object immersed in a transparent liquid within a stationary cylindrical transparent tank. First and second laser line projectors and a camera are rotated around a central axis of the cylindrical tank. The first and second laser line projectors each generate a laser line perpendicular to a plane or rotation and aligned with the center of rotation. The camera images the object. An image from the camera is captured at each of several angular positions of the camera relative to a reference position of the stationary cylindrical tank. The captured images are processed to determine, for each laser line within each image, a plurality of 3D positions where the laser line is incident upon a surface of the object. In embodiments, images are corrected with ray tracing or image warping and registration functions.
    Type: Grant
    Filed: December 22, 2012
    Date of Patent: December 27, 2016
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Matthew Pallone, Paul M. Meaney, Keith D. Paulsen
  • Publication number: 20160313260
    Abstract: A system for dielectric testing of wine in a bottle includes (a) a coaxial probe for interrogating the wine, wherein the coaxial probe has an open end for contacting an exterior surface of the bottle, and (b) a measurement module for determining a dielectric property associated with the wine by generating and measuring radio waves propagating through the coaxial cable. A method for dielectric testing of wine in a bottle includes measuring a radio-wave reflection signal associated with the wine by interrogating the wine, through the bottle, with radio waves, and determining a dielectric property associated with the wine from the radio-wave reflection signal. A probe for radio-wave interrogation of wine in a bottle has an inner conductor, an outer conductor, and an open end with curvature matching the curvature of an exterior surface of the bottle.
    Type: Application
    Filed: April 27, 2016
    Publication date: October 27, 2016
    Inventors: Paul M. Meaney, Timothy Raynolds
  • Publication number: 20150371380
    Abstract: A system and method of imaging tissue includes administering a contrast agent having charged gold nanoparticles in suspension into a vessel of the subject, such that the nanoparticles are carried into the tissue; and performing microwave imaging of the tissue after administering the contrast agent. In embodiments, the nanoparticles have a tissue-selective protein tag. In embodiments, images are taken prior to administering the contrast agent, and further images may be taken during an agent-washout period after imaging with contrast agent. The contrast agent is injectable, with the nanoparticles suspended as a colloid in a biocompatible, isotonic, carrier. In particular embodiments, the nanoparticles have median diameter of less than fifty nanometers, or less than five nanometers, and may have a tissue-selective protein tag. A microwave imaging system has injection apparatus with the gold-nanoparticle agent, and is configured to take, and difference, pre and post contrast images as well as washout images.
    Type: Application
    Filed: February 7, 2014
    Publication date: December 24, 2015
    Inventors: Paul M. MEANEY, Neil EPSTEIN, Keith D. PAULSEN
  • Patent number: 8977340
    Abstract: A system and method for detecting permittivity and conductivity boundaries within a high resolution spatial image of a material is presented. Electrical properties of a material, such as permittivity and conductivity, may assist in identification of physical properties of the material. Structural boundaries within tissue may be identified in spatial images, such as MR images. Image reconstruction algorithms may combine these structural boundaries with microwave images of the tissue to determine the permittivity and conductivity parameters within the structural boundaries. In the case of soft tissue, the microwave images may be captured simultaneously with the spatial images. The microwave images may be taken at a different time from the spatial image for rigid tissue. The method may be employed for two dimensional or three dimensional image reconstruction.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: March 10, 2015
    Assignee: Dartmounth College
    Inventors: Amir H. Golnabi, Keith D. Paulsen, Paul M. Meaney
  • Publication number: 20140375337
    Abstract: A probe sensor has a printed circuit comprising a coplanar transmission line, a ground plane, a plated-through contact via, and a part-circular ring of ground vias surrounding the contact via. The coplanar transmission line and ground plane are formed on a first layer of the printed circuit, and the contact via and part-circular ring of ground vias are plated with a conductive biocompatible material on a second layer of the printed circuit. A system uses a network analyzer with the probe to measure electrical properties of biological tissue. Also described is a method of using the system to determine qualities of stored blood.
    Type: Application
    Filed: May 11, 2012
    Publication date: December 25, 2014
    Applicant: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Tina Zhou, Andrea Borsic, Alexander T. Farkas, Keith D. Paulsen
  • Publication number: 20130204118
    Abstract: A system and method for detecting permittivity and conductivity boundaries within a high resolution spatial image of a material is presented. Electrical properties of a material, such as permittivity and conductivity, may assist in identification of physical properties of the material. Structural boundaries within tissue may be identified in spatial images, such as MR images. Image reconstruction algorithms may combine these structural boundaries with microwave images of the tissue to determine the permittivity and conductivity parameters within the structural boundaries. In the case of soft tissue, the microwave images may be captured simultaneously with the spatial images. The microwave images may be taken at a different time from the spatial image for rigid tissue. The method may be employed for two dimensional or three dimensional image reconstruction.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 8, 2013
    Applicant: DARTMOUTH COLLEGE
    Inventors: Amir H. Golnabi, Keith D. Paulsen, Paul M. Meaney
  • Publication number: 20120274325
    Abstract: A microwave imaging system provides superior breast imaging resolution by combining MR microwave absorption and MR-compatible microwave tomography calculations. These techniques may also be supplemented with magnetic resonance elastography calculations, for example, to facilitate quick multispectral imaging.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 1, 2012
    Inventors: Paul M. MEANEY, Keith D. PAULSEN, John B. WEAVER
  • Patent number: 8207733
    Abstract: A microwave imaging system provides superior breast imaging resolution by combining MR microwave absorption and MR-compatible microwave tomography calculations. These techniques may also be supplemented with magnetic resonance elastography techniques, for example, to facilitate quick multispectral imaging.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 26, 2012
    Assignee: The Trustees of Dartmouth College
    Inventors: Paul M. Meaney, Keith D. Paulsen, John B. Weaver
  • Patent number: 7825667
    Abstract: A microwave imaging process, and a system controlled by an associated software product, illuminate a target with microwaves from a transmitting antenna. Receiving antennas receive microwaves scattered by the target, and form microwave data. The illumination and receiving repeat over multiple transmitting antennas and multiple microwave frequencies. The microwave data is processed to form permittivity and conductivity images by selecting a background dispersion model for permittivity and conductivity. Permittivity and conductivity dispersion coefficients are determined, and permittivity and conductivity distributions are calculated, for each of the microwave frequencies. Forward solutions at multiple frequencies are determined from property distributions, and a dispersion coefficient based Jacobian matrix is determined. Dispersion coefficient updates are determined using the microwave data, and the dispersion coefficients are updated.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 2, 2010
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Qianqian Fang, Paul M. Meaney, Keith D. Paulsen
  • Patent number: 7755010
    Abstract: A non-invasive microwave analysis method determines scattered phase and/or amplitude data for a liquid in a container. A transmitter antenna transmits microwaves that scatter from the container and the liquid in the container. One or more receiver antennas convert the microwaves into microwave electronic signals that are processed to determine the scattered phase and/or amplitude data. Another non-invasive microwave screening method includes placing a container of an unknown liquid in a tank. The container is separated by a membrane from coupling liquid in the tank. Microwave radiation transmits from a transmitter antenna and scatters from the container and the unknown liquid. One or more receiver antennas convert the microwave radiation into microwave electronic signals. The microwave electronic signals are processed to determine scattered phase and/or amplitude data. A pass result or a fail result is determined based on the scattered phase and/or amplitude data.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: July 13, 2010
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Edward M Godshalk, Timothy Raynolds, Paul M. Meaney, Keith D. Paulsen, Greg Burke
  • Publication number: 20090036766
    Abstract: A microwave imaging system provides superior breast imaging resolution by combining MR microwave absorption and MR-compatible microwave tomography calculations. These techniques may also be supplemented with magnetic resonance elastography techniques, for example, to facilitate quick multispectral imaging.
    Type: Application
    Filed: October 6, 2008
    Publication date: February 5, 2009
    Inventors: Paul M. Meaney, Keith D. Paulsen, John B. Weaver
  • Patent number: 7439736
    Abstract: Magnetic resonance elastography pulse sequences for encoding position and motion of spins, and methods of using the pulse sequences are disclosed. The pulse sequences utilize imaging gradients, comprising a positive lobe and a negative lobe having non-symmetric amplitudes, to encode harmonic or wave motion within a specimen, such as tissue.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: October 21, 2008
    Assignee: The Trustees of Dartmouth College
    Inventors: Paul M. Meaney, Keith D. Paulsen, John B. Weaver
  • Patent number: 7319212
    Abstract: A non-invasive microwave analysis system determines scattered phase and/or amplitude data for a liquid in a container. A tank holds coupling liquid; the system includes a membrane for separating the liquid container from the coupling liquid. A transmitter antenna situated within the coupling liquid transmits microwaves. One or more receiver antennas within the coupling liquid convert microwave radiation that scatters from the liquid in the container into microwave electronic signals. Electronics process the microwave electronic signals to determine scattered phase and/or amplitude values of the microwave radiation.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: January 15, 2008
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Edward M Godshalk, Timothy Raynolds, Paul M. Meaney, Keith D. Paulsen, Greg Burke
  • Patent number: 7164105
    Abstract: Non-invasive microwave analysis systems and methods determine scattered phase data for a liquid in a container. A transmitter antenna situated within coupling liquid separated from the container by a flexible membrane transmits microwaves that scatter from the container and the liquid in the container. One or more receiver antennas within the coupling liquid convert the microwaves into microwave electronic signals that are processed to determine the scattered phase data. Non-invasive microwave analysis systems and methods image a portion of a biological subject. A transmitter antenna situated within coupling liquid separated from the subject by a flexible membrane transmits microwaves that scatter from the container and the subject. One or more receiver antennas within the coupling liquid convert the microwaves into microwave electronic signals that are processed to reconstruct a cross-sectional image of the subject.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: January 16, 2007
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Edward M Godshalk, Timothy Raynolds, Paul M. Meaney, Keith D. Paulsen, Greg Burke
  • Publication number: 20040077943
    Abstract: Tomographic imaging of biological tissue is achieved through a microwave imaging system and associated methods. An array of antennas are positioned in an illumination tank to surround biological tissue to be imaged. A liquid coupling medium is placed in the illumination tank, and the biological tissue is immersed in the medium. The array of antennas transmit and receive microwave-frequency RF signals that are propagated through the biological tissue. A signal processor is coupled to the antennas to process a demodulated signal representative of the microwave-frequency RF signal received by one or more of the antennas to produce scattered field magnitude and phase signal projections of the biological tissue. These projections may be used to reconstruct a conductivity and permittivity image across an imaged section of the biological tissue to identify the locations of different tissue types (e.g., normal versus malignant or cancerous) within the biological tissue.
    Type: Application
    Filed: April 4, 2003
    Publication date: April 22, 2004
    Inventors: Paul M. Meaney, Keith D. Paulsen, Margaret W. Fanning, Timothy Reynolds