Patents by Inventor Paul S. Malchesky

Paul S. Malchesky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10362784
    Abstract: Dry mixtures and liquid formulations are provided that comprise metal oxide and/or metal hydroxide nanocrystalline particles. The dry mixtures are advantageously formulated with select surfactants to be readily solubilized and stable in liquid carriers. Additional select components are provided in preferred combinations that are capable of achieving improved biocidal and chemical agent efficacy. Notably, the inventive formulations provided herein allow for easier delivery of the formulations and increased shelf stability.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 30, 2019
    Assignee: Timilon Technology Acquisitions LLC
    Inventors: Bill Sanford, Brandon Walker, Paul S. Malchesky, Kyle Knappenberger, Calvin Jeffrey Kissick, Eric Steward
  • Publication number: 20180007914
    Abstract: Dry mixtures and liquid formulations are provided that comprise metal oxide and/or metal hydroxide nanocrystalline particles. The dry mixtures are advantageously formulated with select surfactants to be readily solubilized and stable in liquid carriers. Additional select components are provided in preferred combinations that are capable of achieving improved biocidal and chemical agent efficacy. Notably, the inventive formulations provided herein allow for easier delivery of the formulations and increased shelf stability.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 11, 2018
    Inventors: Bill Sanford, Brandon Walker, Paul S. Malchesky, Kyle Knappenberger, Calvin Jeffrey Kissick, Eric Steward
  • Publication number: 20170055523
    Abstract: Disclosed are exemplary antimicrobial emulsions having hydrophobic and/or hydrophilic antimicrobial agents, surfactants, solubilizing agents, metal chelators and optionally thickening agents. The emulsions have a small particle size and high zeta potential. The emulsions are effective in cleaning, sanitizing, and disinfecting surfaces and are effective in killing a variety of organisms. The emulsions are stable and have a long shelf life. Other example materials are also disclosed.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Inventors: Paul S. Malchesky, J. Lloyd Breedlove, George E. Grignol
  • Publication number: 20130333334
    Abstract: Antimicrobial emulsions having hydrophobic antimicrobial agents, surfactants, solubilizing agents, metal chelators and optionally thickening agents. The emulsions have a small particle size and high zeta potential. The emulsions are effective in cleaning, sanitizing, and disinfecting surfaces and are effective in killing a variety of organisms. The emulsions are stable and have a long shelf life.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Inventors: Paul S. Malchesky, J. Lloyd Breedlove, George E. Grignol
  • Publication number: 20130029884
    Abstract: Biocide compositions comprising biocide, surfactant, and solubilizing agent. The preferred biocide is parachlorometaxylenol. The biocide composition is useful in oil and gas drilling operations, such as hydraulic fracturing, as well as treating aqueous slurries in ore mining operations. The biocide compositions are effective in controlling microorganisms even in the presence of high salt content water and at high temperatures.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 31, 2013
    Applicant: ENVIROSYSTEMS, INC.
    Inventors: Paul S. Malchesky, George E. Grignol, J. Lloyd Breedlove
  • Patent number: 7661483
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: February 16, 2010
    Assignee: NanoScale Corporation
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper
  • Publication number: 20080210444
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Application
    Filed: August 22, 2007
    Publication date: September 4, 2008
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper
  • Patent number: 7276640
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: October 2, 2007
    Assignee: NanoScale Corporation
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper
  • Patent number: 6887302
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 3, 2005
    Assignee: NanoScale Materials, Inc.
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6860924
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: March 1, 2005
    Assignee: NanoScale Materials, Inc.
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6827766
    Abstract: Improved area decontamination products and methods of use thereof are provided which include reactive nanoparticles (e.g., metal oxides, hydroxides and mixtures thereof) with one or more biocides and a liquid carrier for the nanoparticles and biocide(s). The products may be formulated for area decontamination as sprays, fogs, aerosols, pastes, gels, wipes or foams, and the presence of reactive nanoparticles enhances the neutralization of undesirable chemical or biological compounds or agents. The nanoparticles may be from the group consisting of the alkali metal, alkaline earth metal, transition metal, actinide and lanthanide oxides and hydroxides and mixtures thereof. In preferred forms, nanocrystalline oxides and hydroxides of Al, Ca, Ce, Mg, Sr, Sn, Ti and Zn are employed having single crystallite sizes of up to about 20 nm and surface areas of at least about 15 m2/g.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: December 7, 2004
    Assignee: United States Air Force
    Inventors: Corrie L. Carnes, Kenneth J. Klabunde, Olga Koper, Lisa S. Martin, Kyle Knappenberger, Paul S. Malchesky, Bill R. Sanford
  • Publication number: 20040067159
    Abstract: Improved area decontamination products and methods of use thereof are provided which include reactive nanoparticles (e.g., metal oxides, hydroxides and mixtures thereof) with one or more biocides and a liquid carrier for the nanoparticles and biocide(s). The products may be formulated for area decontamination as sprays, fogs, aerosols, pastes, gels, wipes or foams, and the presence of reactive nanoparticles enhances the neutralization of undesirable chemical or biological compounds or agents. The nanoparticles may be from the group consisting of the alkali metal, alkaline earth metal, transition metal, actinide and lanthanide oxides and hydroxides and mixtures thereof. In preferred forms, nanocrystalline oxides and hydroxides of Al, Ca, Ce, Mg, Sr, Sn, Ti and Zn are employed having single crystallite sizes of up to about 20 nm and surface areas of at least about 15 m2/g.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 8, 2004
    Inventors: Corrie L. Carnes, Kenneth J. Klabunde, Olga Koper, Lisa S. Martin, Kyle Knappenberger, Paul S. Malchesky, Bill R. Sanford
  • Publication number: 20030226443
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Application
    Filed: June 7, 2002
    Publication date: December 11, 2003
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6623695
    Abstract: An anticorrosive, penetration enhancing composition for cleaning decontaminating and rinsing includes electrochemically activated (ECA) water as the decontamination agent. The anticorrosive decontamination composition has, as the anticorrosive agent, a compound or mixture of compounds capable of inhibiting corrosion of various metals used in sterilization decontamination and rinsing systems and objects such as medical instruments. Preferred anticorrosive compounds include phosphates, azoles, and sulfates. Other additives, including wetting agents, are added to reduce the surface energy of the ECA water. This reduced surface energy permits the ECA water to penetrate into objects of complex design thus permitting complete decontamination of the treated object.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: September 23, 2003
    Assignee: Steris Corporation
    Inventors: Paul S. Malchesky, Christopher M. Fricker
  • Patent number: 6558622
    Abstract: A chamber (10) is supplied with a pressurized cleaning agent of carbon dioxide and cosolvents from a first source (12) and an antimicrobial fluid, such as ethylene oxide or hydrogen peroxide from a second source (16). Chamber conditions are maintained in the sub-critical range for the carbon dioxide. The cleaning agent and antimicrobial fluid are recirculated through a separator (32) and a condenser (38) to filter contaminants from the mixture before returning the carbon dioxide, and optionally the antimicrobial fluid and other additives, to the chamber. Medical instruments or other articles within the chamber are cleaned by the cleaning agent and sterilized by the antimicrobial fluid in a single cycle, rendering them ready for reuse in a short period of time. The instruments may be cleaned and stored in hermetically sealable containers (82). The cleaning agent is rapidly evaporated from surfaces of the articles at the end of the cycle by reducing the pressure in the chamber.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 6, 2003
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Publication number: 20030049163
    Abstract: An anticorrosive, penetration enhancing composition for cleaning decontaminating and rinsing includes electrochemically activated (ECA) water as the decontamination agent. The anticorrosive decontamination composition has, as the anticorrosive agent, a compound or mixture of compounds capable of inhibiting corrosion of various metals used in sterilization decontamination and rinsing systems and objects such as medical instruments. Preferred anticorrosive compounds include phosphates, azoles, and sulfates. Other additives, including wetting agents, are added to reduce the surface energy of the ECA water. This reduced surface energy permits the ECA water to penetrate into objects of complex design thus permitting complete decontamination of the treated object.
    Type: Application
    Filed: October 27, 1999
    Publication date: March 13, 2003
    Inventors: PAUL S. MALCHESKY, CHRISTOPHER M. FRICKER
  • Patent number: 6387238
    Abstract: An electrolysis unit (10, 210, 310) has an anode (16, 216,316) and a gas diffusion cathode (18, 218, 318). Air is fed to the cathode (18, 218) to generate peroxide species, such as hydrogen peroxide, peroxide ions, or peroxide radicals by electrolysis of oxygenated water. A peracetic acid precursor, such as acetyl salicylic acid, reacts with the peroxide to form peracetic acid. An ion selective barrier (20, 220) optionally separates the unit into two chambers, an anodic chamber (12, 212) and a cathodic chamber (14, 214). By selecting either a proton permeable membrane or an anion exchange membrane for the barrier, the peracetic acid may be formed in either an alkaline electrolyte in the cathodic chamber or in an acid electrolyte in the anode chamber, respectively.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: May 14, 2002
    Assignee: Steris Inc.
    Inventors: Tom L. Merk, Paul S. Malchesky, Chung-Chiun Liu
  • Patent number: 6171551
    Abstract: An electrolysis unit (10) has an ion selective barrier (20) for separating an anodic chamber (12) from a cathodic chamber (14). An electrolyte within the unit includes a precursor, such as potassium acetate, or acetic acid. A positive potential is applied to an anode (16) within the anodic chamber, resulting in the generation of a variety of shorter and longer lived oxidizing species, such as peracetic acid, hydrogen peroxide, and ozone. In one preferred embodiment, a solution containing the oxidizing species is transported to a site where articles, such as medical instruments, are to be decontaminated. The oxidizing species are generated as needed, avoiding the need to store hazardous decontaminants.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: January 9, 2001
    Assignee: Steris Corporation
    Inventors: Paul S. Malchesky, Chung-Chiun Liu, Tom L. Merk
  • Patent number: 6126810
    Abstract: A recirculation system for electrochemically activated antimicrobial solutions returns antimicrobial solution which has been depleted of active antimicrobial species to a electrolytic cell for regeneration of the active species. Organic load, which frequently contaminates items to be sterilized or disinfected, such as medical instruments, rapidly depletes the active antimicrobial species in a conventional treatment system, reducing the effectiveness of microbial decontamination by electrochemically activated solutions. By recirculating the antimicrobial through the electrolytic cell, the concentration of active species is maintained at a level at which efficient sterilization is achieved.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: October 3, 2000
    Assignee: Steris Corporation
    Inventors: Christopher M. Fricker, Paul S. Malchesky, Brian C. Wojcieck, Jason M. Sell
  • Patent number: 5932171
    Abstract: An apparatus (A) for sterilizing medical instruments and other articles includes a tray (12) with an article receiving area (14). An article to be microbially decontaminated is positioned in the receiving area (14) and a microbe blocking lid (10) is closed. A water electrolysis apparatus (30) receives water, splits the water into two separate streams that pass respectively through an anode chamber (34) and a cathode chamber (36), and exposes the streams to an electric field that results in the production of a catholyte solution for cleaning and an anolyte solution for sterilization. The anolyte and catholyte are selectively circulated through the article receiving area (14) by a pump (66) to clean and microbially decontaminate the external surfaces and internal passages of an article located therein. The anolyte or deactivated anolyte provides a sterile rinse solution. A reagent dispensing well (60) receives an ampule (80) or the like.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: August 3, 1999
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky