Patents by Inventor Paul S. Malchesky

Paul S. Malchesky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5928948
    Abstract: A porous material (10) is contaminated with soil (14). Optionally, the porous material is partially shielded by an impermeable layer. The contaminated porous material is packaged and shipped to a user site. The contaminated porous material is removed from the package and placed in an automated processor containing medical equipment (22). The medical equipment and porous material are subjected to a cleaning, disinfecting, or sterilizing cycle in the processor. The cleaning process is evaluated by examining the porous material with an infrared or other electronic reader (24) to determine the presence of remaining soil which has not be removed during the cleaning, disinfecting, or sterilizing cycle.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: July 27, 1999
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Patent number: 5871692
    Abstract: A method for cleaning, decontaminating, and sterilizing catheters (10) using a combination of liquid and gaseous/plasma sterilization techniques to ensure the complete and efficient sterilization of a catheter (10). Angiographic dye and saline are removed from the interior (36) of the balloon (14) and its lumen (16). The outer surfaces of the catheter (10) and a guide wire lumen (18) of the catheter (10) are cleaned, decontaminated, and sterilized (42) with a liquid sterilant. The liquid sterilant fills a balloon (14) and a balloon lumen (16) of the catheter (10). The liquid sterilant is retained in the balloon (14) and the lumen (16) for a select amount of time. Thereafter, the liquid sterilant is drained from the balloon (14) and the balloon lumen (16). The filling, retaining, and draining steps are repeated until an interior (36) of the balloon (14) and the balloon lumen (16) are sterilized. Residual liquid sterilant is rinsed from the interior (36) of the balloon (14) and the balloon lumen (16).
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: February 16, 1999
    Assignees: Steris Corporation, The Cleveland Clinic Foundation
    Inventors: Donna M. Haire, David F. Wolf-Bloom, Paul S. Malchesky
  • Patent number: 5858305
    Abstract: A decontamination apparatus for medical devices includes a decontamination basin (14a, 14b) with a selectively opened and closed cover member (16a, 16b) to provide selective access to the basin (14a, 14b). A mixing chamber assembly (80) selectively dispenses detergent concentrate and decontaminant concentrate into a liquid to form a liquid cleaning solution or a liquid decontaminant solution, respectively. A source of decontaminated rinse liquid, such as a microbe removal filter (54), is in selective fluid communication with the basin (14a, 14b). A source of anti-microbial liquid is in selective fluid communication with the microbe removal filter (54) and rinse liquid flow paths (58) between the microbe removal filter and the basin for decontaminating the filter (54) and the rinse lines (58). Each channel of a medical device (E) being decontaminated is connected to a channel flush line (30) and a channel pump (32) for flushing the channels of the device (E).
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: January 12, 1999
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Patent number: 5833935
    Abstract: A countertop decontamination unit (A) has a decontamination chamber (10) for receiving a tray or module (C) which contains items to be sterilized, disinfected, or otherwise microbially decontaminated. The tray or walls of the decontamination chamber itself provide fluid outlets from which an anti-microbial solution is conveyed through tubing (76) to fittings (78). A pump (20) recirculates the anti-microbial fluid. The fittings include a porous sleeve (80, 92) which is received in firm frictional connection with an annular surface of a bore, nipple, or coupler mechanism of the item (86) to be sterilized. The porous sleeve is preferably elastomeric when used for frictional interconnections, but may be rigid when used with threaded or other standardized connectors. The porous sleeve has a porosity of 3 microns or more, sufficient that the anti-microbial fluid penetrates through the porous portion and contacts the immediately contiguous and abutting annular surface.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: November 10, 1998
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Patent number: 5759490
    Abstract: A countertop decontamination unit (A) has a decontamination chamber (10) which contains items to be sterilized, disinfected, or otherwise microbially decontaminated. A catheter (60) has an initial curve shape (62A). However, the catheter (60) is straightened in use and returns to a shape (62B). During a decontamination cycle, one or more porous clips (64) are disposed into frictional contact with the catheter. The clip (64) holds the catheter in the initial or undersized shape (62A) during the decontamination process. In the decontamination process, the decontamination fluid is heated at least to a temperature that resets the shape memory of the catheter (e.g., 40.degree.-60.degree. C.). The clip (64) has a sufficient porosity that microbial decontamination fluid penetrates through the clip to wet portions of the item surface in frictional contact with the clip assuring total microbial decontamination of the catheter.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: June 2, 1998
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Patent number: 5747794
    Abstract: Medical and other instruments and devices (16, 44) may have a build-up of biological residue film, even after sterilizing. Dead cell membranes in this film can give off endotoxins. To check for the presence of biological residue film, light from a source (10, 40) travels along optical fibers (12, 42) and is focused by a lens (24) on a surface (26) to be examined. Reflected or transmitted light is conveyed by optical fibers (46) to an opto-electrical analyzing device (30, 48). In one embodiment, the opto-electrical device (30) senses the intensity of reflected light to provide an indication of reflectivity attributable to the biological film build-up. In another embodiment, a spectrophotometer (48) converts the returned light into an indication of the reflected spectrum which is analyzed (50) to determine the nature of the material which reflected the light, in particular the type of protein or other biological residue found on the examined surface.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: May 5, 1998
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Patent number: 5736355
    Abstract: A self contained biological indicator (A) determines an effectiveness of a microbial decontamination process. A dart (68) has a seal (80) engaged by rim (58) in detents (50C) in fins (36A-36F) of a cap (C). The dart has a cutting edge (76) aligned just above a foil seal (86) sealing a growth medium (F) in a medium housing (D). The dart has a chamber (72) in which challenge spores or other microorganisms on a paper disk (74) are housed. A microporous membrane (G) traps the challenge spores in the chamber while allowing a microbial decontamination fluid to flow through to contact the spores. The housing is lodged by a flange (56) in detents (50A) in fins (36A-36F).
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: April 7, 1998
    Assignee: Steris Corporation
    Inventors: Denis G. Dyke, Paul S. Malchesky, Raymond C. Kralovic, Donna M. Richardson, Joseph J. Switka
  • Patent number: 5552115
    Abstract: A countertop decontamination unit (A) has a decontamination chamber (10) for receiving a tray or module (C) which contains items to be sterilized, disinfected, or otherwise microbially decontaminated. The tray or walls of the decontamination chamber itself provide fluid outlets from which an anti-microbial solution is conveyed through tubing (76) to fittings (78). A pump (20) recirculates the anti-microbial fluid. The fittings include a porous sleeve (80, 92) which is received in firm frictional connection with an annular surface of a bore, nipple, or coupler mechanism of the item (86) to be sterilized. The porous sleeve is preferably elastomeric when used for frictional interconnections, but may be rigid when used with threaded or other standardized connectors. The porous sleeve has a porosity of 3 microns or more, sufficient that the anti-microbial fluid penetrates through the porous portion and contacts the immediately contiguous and abutting annular surface.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: September 3, 1996
    Assignee: Steris Corporation
    Inventor: Paul S. Malchesky
  • Patent number: 5518927
    Abstract: A pigment such as crystal violet is impregnated in or otherwise affixed to a translucent plastic or porous member (14, 22). The color change material changes at least one of opacity or color with repeated exposure to a fluid sterilant, such as an oxidant solution. A label (10, 24) is mounted behind the translucent plastic material and carries an indicia (12, 26). With repeated sterilizations of the instrument, the color change material becomes progressively more translucent, allowing the indicia to be read through the translucent plastic material. When the indicia becomes visible, such as after about 7 sterilization cycles in FIG. 3, the user is warned to discontinue use of the instrument, either discarding it or having it rebuilt. Rather than having a written indicia, a color scale (30) can be provided for comparison against the current color of the color change material. When the color changes to the discard color on the color scale, the user is again advised to discontinue use of or rebuild the instrument.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: May 21, 1996
    Assignee: Steris Corporation
    Inventors: Paul S. Malchesky, George E. Grignol
  • Patent number: 5516648
    Abstract: Reference microorganisms are sealed into an interior cavity of a microporous membrane (14, 20). In one embodiment, the reference microbes are inoculated on a element (12) which is sealed in a microporous envelope (14) (FIG. 1). In another embodiment, the reference microbes (22) are loaded into an interior bore or cavity of a microporous plastic tube or envelope (20) (FIG. 3). The microporous membrane and the reference microbes, such as spores, are immersed concurrently with items to be microbially decontaminated separately into an anti-microbial fluid. The microporous membrane is constructed of a material which is sufficiently resistant to temperature, water, strong oxidants, and other anti-microbial agents or processes used for microbial decontamination or sterilization that it retains its integrity during the immersion in any common steam, gas, or liquid microbial decontamination or sterilization fluid or system.
    Type: Grant
    Filed: August 18, 1994
    Date of Patent: May 14, 1996
    Assignee: Steris Corporation
    Inventors: Paul S. Malchesky, Donna M. Richardson
  • Patent number: 5407685
    Abstract: A film for releasing at least one of an anti-microbial agent, oxygen, and a medicament includes a flexible, porous layer (18) such as a woven, non-woven, or knitted cloth or a layer of open cell foam. A first dry reagent (12) and a second dry reagent (14) which react in the presence of a dilutant to form the anti-microbial agent, oxygen, or medicament attached to the flexible, porous layer. In one preferred embodiment, the two dry reagents are disposed on opposite sides of the flexible, porous layer such that the flexible porous layer keeps the two apart and prevents a premature reaction. Porous outer layers (20, 22) prevent the powdered reagents from being wiped off while permitting dilutant access. In a preferred embodiment, the powdered reagents include acetylsalicylic acid and a perborate which react in the presence of water to generate peracetic acid (an antimicrobial agent which breaks down in a matter of minutes to hours into oxygen) and salicylic acid (a topical keratotic).
    Type: Grant
    Filed: May 18, 1993
    Date of Patent: April 18, 1995
    Assignee: Steris Corporation
    Inventors: Paul S. Malchesky, Raymond C. Kralovic
  • Patent number: 5080796
    Abstract: A method for more selectively removing macromolecules from a plasma solution, whereby plasma containing the macromolecules to be removed is provided and heated to a temperature near or above normal body temperature but below the boiling point of the plasma solution. The heated plasma solution is filtered while at a temperature near or above normal body temperature but below its boiling point with a membrane filter to remove selectively macromolecules from the plasma solution. An apparatus for accomplishing the foregoing is also provided.
    Type: Grant
    Filed: February 12, 1990
    Date of Patent: January 14, 1992
    Assignee: The Cleveland Clinic Foundation
    Inventors: Yukihiko Nose', Paul S. Malchesky, Takashi Horiuchi
  • Patent number: 5053344
    Abstract: A magnetic field separation system includes a magnet unit having first and second pole members forming a linear gap with a relatively high magnetic field density therebetween. A flow chamber comprised of first and second optically transparent slides mounted so as to define a generally planar fluid pathway therebetween, passes a biological fluid over the linear gap at an angle, with flow through the pathway being accomplished by gravity and capillary action. Biological fluid, when sensitized to magnetic reaction, passes through the fluid pathway, thereby resulting in perceivable separation of the sensitized particles.
    Type: Grant
    Filed: September 4, 1990
    Date of Patent: October 1, 1991
    Assignee: Cleveland Clinic Foundation
    Inventors: Maciej Zborowski, Paul S. Malchesky
  • Patent number: 4966709
    Abstract: A method for more selectively removing macromolecules from a plasma solution, whereby plasma containing the macromolecules to be removed is provided and heated to a temperature near or above normal body temperature but below the boiling point of the plasma solution. The heated plasma solution is filtered while at a temperature near or above normal body temperature but below its boiling point with a membrane filter to remove selectively macromolecules from the plasma solution. An apparatus for accomplishing the foregoing is also provided.
    Type: Grant
    Filed: July 18, 1988
    Date of Patent: October 30, 1990
    Assignee: The Cleveland Clinic Foundation
    Inventors: Yukihiko Nose, Paul S. Malchesky, Takashi Horiuchi
  • Patent number: 4897162
    Abstract: A glucose sensing apparatus and method includes an electrocatalytic sensor having a reference electrode and a sensing electrode. A periodic signal is comprised of a ramp voltage which is intermingled a series of square wave measurement pulses. This signal is applied to the sensor. Current levels are sampled twice during each measurement pulse, and a signal indicative of glucose level is derived therefrom. After completion of a measurement, a reactivation, signal is applied to the electrode to regenerate deteriorated surfaces thereof.
    Type: Grant
    Filed: February 2, 1988
    Date of Patent: January 30, 1990
    Assignee: The Cleveland Clinic Foundation
    Inventors: Jan Lewandowski, Paul S. Malchesky, Yukihiko Nose'
  • Patent number: 4619639
    Abstract: A method and apparatus for carrying out separation of plasma from whole blood, in which whole blood is passed through a filtration membrane means of a material suitable for separating plasma from whole blood and having a pore size from 0.1 to 0.6 microns at positive pressure differential across the membrane in a range up to just below 50 mm Hg. This provides an increased flow as compared to the flow obtained with higher pressures.
    Type: Grant
    Filed: September 11, 1985
    Date of Patent: October 28, 1986
    Assignee: Asahi Medical Co., Ltd.
    Inventors: Yukihiko Nose, Paul S. Malchesky
  • Patent number: 4402940
    Abstract: This invention provides a method for treating blood plasma wherein a hollow fiber membrane which comprises at least a skin layer on one surface of the membrane and also a porous layer inside the membrane is employed. The skin layer of the membrane has micropores with average pore size of 50 to 450 A, and the membrane shows a water permeability of 80 ml/m.sup.2.hr.mmHg or more, and permeabilites for human blood plasma albumin of 85% or more and for human blood plasma immunoglobulin G(IgG) of 80% or more, and a rate of inhibition against human blood plasma immunoglobulin M(IgM) of 40% or more. Use of the above mentioned hollow fiber membrane, which makes it possible to selectively remove immune complex, rheumatoid factors, etc., without decrease in levels of immunological functions, brings excellent effects on therapy of autoimmune diseases.
    Type: Grant
    Filed: September 17, 1982
    Date of Patent: September 6, 1983
    Assignee: Kuraray Co., Ltd.
    Inventors: Yukihiko Nose, Koji Kayashima, Akinori Sueoka, Yoshihiro Asanuma, Shigeru Shinagawa, James Smith, Andrej Werynski, Paul S. Malchesky
  • Patent number: 4381775
    Abstract: A method for carrying out separation of plasma from whole blood, in which whole blood is passed through a filtration membrane means of a material suitable for separating plasma from whole blood and having a pore size from 0.1 to 0.6 microns at positive pressure differential across the membrane in a range up to just below 50 mm Hg. This provides an increased flow as compared to the flow obtained with higher pressures.
    Type: Grant
    Filed: August 18, 1980
    Date of Patent: May 3, 1983
    Assignee: Takeda Chemical Industries, Ltd.
    Inventors: Yukihiko Nose', Paul S. Malchesky
  • Patent number: 4350156
    Abstract: An on-line filtration system for the removal of macromolecules greater than 70,000 mol. wt. from a physiological solution, such as blood, in the therapeutic treatment of various disease states. For blood, the plasma (which contains the macromolecules) is separated continuously from the blood using a first membrane filter with a membrane porosity of nominally 0.2 to 1.0 micron. The separated plasma is then continuously filtered in a physiological temperature state or a cooled state through a second membrane filter with a membrane porosity of nominally 0.01 to 0.2 micron, which retains the macromolecules. In the cooled state, separation of the macromolecules is effected more efficiently than could be done in the non-cooled state. The treated plasma (macromolecules removed) is then reunited with the blood flow coming from the first plasma filter and returned to the patient. The blood flow and filtration processes are generally continuous.
    Type: Grant
    Filed: May 29, 1980
    Date of Patent: September 21, 1982
    Assignee: Japan Foundation for Artificial Organs
    Inventors: Paul S. Malchesky, Yukihiko Nose
  • Patent number: 4311587
    Abstract: A filter connection for peritoneal dialysis is presented including, in a flow line from a source of fresh dialysate solution carried on the patient's body, and under pressure, through a bacteria filter of sub-micron porosity for removing microorganisms generally greater than about 0.2 microns (nominal size) together with tubular connections leading from the filter toward a catheter inserted in the patient's peritoneum including in order from the filter, a first check valve permitting flow only away from the filter, then an outflow port with check valve permitting used dialysis flow only away from the patient, and finally the connection to the catheter tube.
    Type: Grant
    Filed: December 10, 1979
    Date of Patent: January 19, 1982
    Assignee: Japan Foundation for Artificial Organs
    Inventors: Yukihiko Nose, Paul S. Malchesky