Patents by Inventor Pazhayannur Ramanathan Subramanian

Pazhayannur Ramanathan Subramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190218650
    Abstract: A method of forming titanium-based spherical metallic particles includes performing a hydride-dehydride process on a meltless metallic sponge to form a feedstock material including a metallic powder. The method further includes introducing the feedstock material into a microwave plasma discharge to form the titanium-based spherical metallic particles.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Pazhayannur Ramanathan Subramanian, Anthony Joseph Vinciquerra, Bernard Patrick Bewlay
  • Publication number: 20190217395
    Abstract: A method of forming titanium-based spherical metallic particles includes contacting a feedstock material including a metal halide with a reductant in the presence of a microwave plasma discharge.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Pazhayannur Ramanathan Subramanian, Anthony Joseph Vinciquerra, Laura Cerully Dial, Steven Jude Duclos
  • Publication number: 20180230576
    Abstract: In some embodiments, a gamma titanium aluminide alloy consists essentially of, in atomic percent, 38 to about 50% aluminum, 1 to about 6% niobium, 0.25 to about 2% tungsten, 0.01 to about 1.5% boron, up to about 1% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, up to about 2% manganese, and the balance titanium and incidental impurities. In some embodiments, the gamma titanium aluminide alloy forms at least a portion of a gas turbine component. In some embodiments, a gamma titanium aluminide alloy, consists essentially of, in atomic percent, about 40 to about 50% aluminum, about 1 to about 5% niobium, about 0.3 to about 1% tungsten, about 0.1 to about 0.3% boron, up to about 0.1% carbon, up to about 2% chromium, up to about 2% vanadium, up to about 2% manganese, up to about 1% molybdenum, and the balance titanium and incidental impurities.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Stephen Joseph BALSONE, Dwight Eric DAVIDSON, Michael Francis Xavier GIGLIOTTI, JR., Pazhayannur Ramanathan SUBRAMANIAN, Akane SUZUKI
  • Publication number: 20180230822
    Abstract: In some embodiments, a gamma titanium aluminide alloy consists essentially of, in atomic percent, about 38 to about 50% aluminum, about 6% niobium, about 0.25 to about 2% tungsten, optionally up to about 1.5% boron, about 0.01 to about 1.0% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, optionally up to about 2% manganese, and the balance titanium and incidental impurities. In some embodiments, the gamma titanium aluminide alloy forms at least a portion of a gas turbine component. In some embodiments, a gamma titanium aluminide alloy, consisting essentially of, in atomic percent, about 40 to about 50% aluminum, about 3 to about 5% niobium, about 0.5 to about 1.5% tungsten, about 0.01 to about 1.5% boron, about 0.01 to about 1.0% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, optionally up to about 2% manganese, and the balance titanium and incidental impurities.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Stephen Joseph BALSONE, Dwight Eric DAVIDSON, Michael Francis Xavier GIGLIOTTI, JR., Pazhayannur Ramanathan SUBRAMANIAN, Akane SUZUKI
  • Publication number: 20180178303
    Abstract: A nickel-based braze alloy composition is described, including nickel, about 1 weight % to about 5 weight % boron (B); and about 1 weight % to about 20 weight % germanium (Ge). The composition is free of any silicon. Superalloy articles that contains a crack or other type of void or gap filled with the nickel-based braze alloy composition are also described, along with methods for filling such a gap. Related articles of manufacture and brazing processes to join metal components are also disclosed.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Raghavendra Rao Adharapurapu, Michael Francis Xavier Gigliotti, JR., David Edwin Budinger, Pazhayannur Ramanathan Subramanian, Jeffrey Jon Schoonover
  • Patent number: 9562276
    Abstract: Articles suitable for use in high temperature applications, such as turbomachinery components, and methods for making such articles, are provided. One embodiment is an article. The article comprises a material comprising a plurality of L12-structured gamma-prime phase precipitates distributed within a matrix phase at a concentration of at least 20% by volume, wherein the gamma-prime phase precipitates are less than 1 micrometer in size, and a plurality of A3-structured eta phase precipitates distributed within the matrix phase at a concentration in the range from about 1% to about 25% by volume. The solvus temperature of the eta phase is higher than the solvus temperature of the gamma-prime phase. Moreover, the material has a median grain size less than 10 micrometers.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: February 7, 2017
    Assignee: General Electric Company
    Inventors: Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
  • Patent number: 9511436
    Abstract: A composite composition that includes an MCrAlX alloy and a nano-oxide ceramic is disclosed. In the formula, M includes nickel, cobalt, iron, or a combination thereof, and X includes yttrium, hafnium, or a combination thereof, from about 0.001 percent to about 2 percent by weight of the alloy. The amount of the nano-oxide ceramic is greater than about 40 percent, by volume of the composition. A protective covering that includes the composite composition is also disclosed. The protective covering can be attached to a tip portion of a blade with a braze material. A method for joining a protective covering to a tip portion of a blade, and a method for repair of a blade, are also provided.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 6, 2016
    Assignee: General Electric Company
    Inventors: Sundeep Kumar, Anand Krishnamurthy, Kivilcim Onal, Pazhayannur Ramanathan Subramanian, Dennis Michael Gray, Padmaja Parakala
  • Publication number: 20160201167
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit creep and oxidation resistance substantially equivalent to or better than rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Applicant: General Electric Company
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20150132605
    Abstract: A composite composition that includes an MCrAlX alloy and a nano-oxide ceramic is disclosed. In the formula, M includes nickel, cobalt, iron, or a combination thereof, and X includes yttrium, hafnium, or a combination thereof, from about 0.001 percent to about 2 percent by weight of the alloy. The amount of the nano-oxide ceramic is greater than about 40 percent, by volume of the composition. A protective covering that includes the composite composition is also disclosed. The protective covering can be attached to a tip portion of a blade with a braze material. A method for joining a protective covering to a tip portion of a blade, and a method for repair of a blade, are also provided.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: General Electric Company
    Inventors: Sundeep Kumar, Anand Krishnamurthy, Kivilcim Onal, Pazhayannur Ramanathan Subramanian, Dennis Michael Gray, Padmaja Parakala
  • Publication number: 20140154094
    Abstract: Articles suitable for use in high temperature applications, such as turbomachinery components, and methods for making such articles, are provided. One embodiment is an article. The article comprises a material comprising a plurality of L12-structured gamma-prime phase precipitates distributed within a matrix phase at a concentration of at least 20% by volume, wherein the gamma-prime phase precipitates are less than 1 micrometer in size, and a plurality of A3-structured eta phase precipitates distributed within the matrix phase at a concentration in the range from about 1% to about 25% by volume. The solvus temperature of the eta phase is higher than the solvus temperature of the gamma-prime phase. Moreover, the material has a median grain size less than 10 micrometers.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 5, 2014
    Applicant: General Electric Copmpany
    Inventors: Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
  • Patent number: 8608877
    Abstract: Articles that include a material that has L12-structured gamma-prime phase precipitates within a matrix phase at a concentration of at least 20% by volume are disclosed. The gamma-prime phase precipitates are less than 1 micrometer in size. The material also has A3-structured eta phase precipitates distributed within the matrix phase at a concentration in the range from about 1% to about 25% by volume. The articles may be formed by mechanically working a workpiece that has at least about 40% nickel, about 1.5% to about 8% titanium, and about 1.5% to about 4.5% aluminum. The workpiece may be worked at a temperature below a solvus temperature of the eta phase; and then heat treated at a temperature sufficient to dissolve any gamma prime phase present in the workpiece but below the solvus temperature of the eta phase.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: December 17, 2013
    Assignee: General Electric Company
    Inventors: Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
  • Publication number: 20130160967
    Abstract: Methods for casting a metallic material to form a component are described. The component can be a superalloy-containing turbine part, for example. The general method includes the step of pouring the metallic material, in molten form, into an investment mold; and then rapidly immersing the entire investment mold into a bath that contains a low-melting liquid coolant metal, so as to achieve substantially uniform, multi-directional heat transfer out of the molten material. The molten material that solidifies to form the component is characterized by a fine-grained, equiaxed grain structure. Related embodiments include the use of two ingots that constitute the superalloy material. One ingot includes the oxygen-reactive elements, and is prepared by a vacuum-melting technique. The other ingot includes the remainder of the elements, and can be prepared by a number of techniques, such as air-melting processes.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Stephen Joseph Balsone, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Roger John Petterson, Stephen Francis Rutkowski, Pazhayannur Ramanathan Subramanian
  • Patent number: 8323728
    Abstract: A method for making an article comprising a multilayered structure comprising a series of magnetic layers is provided. The method includes providing a substrate and depositing a series of magnetic layers on the substrate and disposing insulating layers between successive magnetic layers. Each magnetic layer has a thickness of at least about 2 micrometers and magnetic material has an average grain size less than 200 nm.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 4, 2012
    Assignee: General Electric Company
    Inventors: Luana Emiliana Iorio, Pazhayannur Ramanathan Subramanian
  • Patent number: 8313588
    Abstract: An amorphous magnetic alloy is presented. The alloy has the general formula: (Fe1-xCox)nMoaPbBcCdSie, wherein n is the atomic percent of iron and cobalt; x is the fraction of n; a, b, c, d and e are the atomic percent of molybdenum, phosphorous, boron, carbon and silicon respectively and n, x, a, b, c, d and e are defined by following relationship: 76?n?85; 0.05<x?0.50; 0?a?4; b?10; 0?c<d; and 0.1?e?2. Articles comprising the alloy and methods employing the alloy for making articles are also presented.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: November 20, 2012
    Assignee: General Electric Company
    Inventors: Luana Emiliana Iorio, Francis Johnson, Pazhayannur Ramanathan Subramanian, Gary Shiflet, Joseph Poon, Sriparna Bhattacharya
  • Publication number: 20120282485
    Abstract: Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases maybe: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 8, 2012
    Applicant: General Electric Company
    Inventors: Benard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard Didomizio, Voramon Supatarawanich Dheeradhada
  • Patent number: 8268237
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Patent number: 8247085
    Abstract: Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases may be: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 21, 2012
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard DiDomizio, Voramon Supatarawanich Dheeradhada
  • Patent number: 8153052
    Abstract: The present invention provides a method for forming a refractory metal-intermetallic composite. The method includes providing a first powder comprising a refractory metal suitable for forming a metal phase; providing a second powder comprising a silicide precursor suitable for forming an intermetallic phase; blending the first powder and the second powder to form a powder blend; consolidating and mechanically deforming the powder blend at a first temperature; and reacting the powder blend at a second temperature to form the metal phase and the intermetallic phase of the refractory metal-intermetallic composite, wherein the second temperature is higher than the first temperature.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: April 10, 2012
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian, Ji-Cheng Zhao, Ann Melinda Ritter
  • Publication number: 20120067468
    Abstract: An amorphous magnetic alloy is presented. The alloy has the general formula: (Fe1-xCox)nMoaPbBcCdSie, wherein n is the atomic percent of iron and cobalt; x is the fraction of n; a, b, c, d and e are the atomic percent of molybdenum, phosphorous, boron, carbon and silicon respectively and n, x, a, b, c, d and e are defined by following relationship: 76?n?85; 0.05<x?0.50; 0?a?4; b?10; 0?c<d; and 0.1?e?2. Articles comprising the alloy and methods employing the alloy for making articles are also presented.
    Type: Application
    Filed: October 30, 2009
    Publication date: March 22, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Luana Emiliana Iorio, Francis Johnson, Pazhayannur Ramanathan Subramanian, Gary Shiflet, Joseph Poon, Sriparna Bhattacharya
  • Patent number: 8114225
    Abstract: An article including a monolithic body including iron, cobalt, and nitrogen is provided. The monolithic body includes a matrix phase and a plurality of particles disposed within the matrix phase. The particles include a phase comprising nitrogen.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 14, 2012
    Assignee: General Electric Company
    Inventors: Luana Emiliana Iorio, Pazhayannur Ramanathan Subramanian, Michael Francis Xavier Gigliotti