Patents by Inventor Per Just Andersen

Per Just Andersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160096774
    Abstract: An expanded lightweight aggregate has compositional ranges (Wt. % Range) of about: (a) 40 to 60% ground glass or pumice, 40 to 60% water, 3 to 15% sodium silicate, and 0.1 to 5% NaNO3 for the slurry; and (b) 50 to 85% ground glass or pumice, and 15 to 50% slurry for the granulator.
    Type: Application
    Filed: April 24, 2014
    Publication date: April 7, 2016
    Inventors: Evan R. Daniels, Per Just Andersen
  • Publication number: 20150239781
    Abstract: A cementitious composite product that can function as a substitute for stone and solid surface materials, such as granite, marble, and engineered stone is provided. Furthermore methods for manufacturing the cementitious composite product using an extrudable cementitious composition that can be extruded or otherwise shaped into stone-like building products that can be used as a substitute for many known stone products is disclosed. In one embodiment, the cementitious composite products can be manufactured more cheaply to be as tough or tougher and more durable than stone and solid surface materials.
    Type: Application
    Filed: May 12, 2015
    Publication date: August 27, 2015
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20150218049
    Abstract: A method of manufacturing a cementitious composite including: (1) mixing an extrudable cementitious composition by first forming a fibrous mixture comprising fibers, water and a rheology modifying agent and then adding hydraulic cement; (2) extruding the extrudable cementitious composition into a green extrudate, wherein the green extrudate is characterized by being form-stable and retaining substantially a predefined cross-sectional shape; (3) removing a portion of the water by evaporation to reduce density and increase porosity; and (4) heating the green extrudate at a temperature from greater than 65° C. to less than 99° C. is disclosed. Such a process yields a cementitious composite that is suitable for use as a wood substitute. Particularly, by using higher curing temperatures for preparing the cementitious budding products, the building products have a lower bulk density and a higher flexural strength as compared to conventional products.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Applicant: E. KASHOGGI INDUSTRIES, LLC
    Inventors: Per Just Andersen, SIMON K. HODSON
  • Patent number: 9028606
    Abstract: A cementitious composite product that can function as a substitute for stone and solid surface materials, such as granite, marble, and engineered stone is provided. Furthermore methods for manufacturing the cementitious composite product using an extrudable cementitious composition that can be extruded or otherwise shaped into stone-like building products that can be used as a substitute for many known stone products is disclosed. In one embodiment, the cementitious composite products can be manufactured more cheaply to be as tough or tougher and more durable than stone and solid surface materials.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 12, 2015
    Assignee: E. Khashoggi Industries, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20120276310
    Abstract: A method of manufacturing a cementitious composite including: (1) mixing an extrudable cementitious composition by first forming a fibrous mixture comprising fibers, water and a rheology modifying agent and then adding hydraulic cement; (2) extruding the extrudable cementitious composition into a green extrudate, wherein the green extrudate is characterized by being form-stable and retaining substantially a predefined cross-sectional shape; (3) removing a portion of the water by evaporation to reduce density and increase porosity; and (4) heating the green extrudate at a temperature from greater than 65° C. to less than 99° C. is disclosed. Such a process yields a cementitious composite that is suitable for use as a wood substitute. Particularly, by using higher curing temperatures for preparing the cementitious building products, the building products have a lower bulk density and a higher flexural strength as compared to conventional products.
    Type: Application
    Filed: November 19, 2010
    Publication date: November 1, 2012
    Applicant: E. KHASHOGGI INDUSTRIES, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20120270971
    Abstract: A cementitious composite product that can function as a substitute for stone and solid surface materials, such as granite, marble, and engineered stone is provided. Furthermore methods for manufacturing the cementitious composite product using an extrudable cementitious composition that can be extruded or otherwise shaped into stone-like building products that can be used as a substitute for many known stone products is disclosed. In one embodiment, the cementitious composite products can be manufactured more cheaply to be as tough or tougher and more durable than stone and solid surface materials.
    Type: Application
    Filed: November 19, 2010
    Publication date: October 25, 2012
    Applicant: E. KHASHOGGI INDUSTRIES, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20110120349
    Abstract: A cementitious composite product that can function as a substitute for stone and solid surface materials, such as granite, marble, and engineered stone is provided. Furthermore methods for manufacturing the cementitious composite product using an extrudable cementitious composition that can be extruded or otherwise shaped into stone-like building products that can be used as a substitute for many known stone products is disclosed. In one embodiment, the cementitious composite products can be manufactured more cheaply to be as tough or tougher and more durable than stone and solid surface materials.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicant: E. KHASHOGGI INDUSTRIES, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20110004332
    Abstract: Methods of preparing design-optimized concrete compositions having target compressive strengths and slumps with a minimal amount of water are disclosed. In particular, the optimized concrete compositions are produced by analyzing pre-existing mix designs from a manufacture and determining the optimum amount of water required in the mix (i.e., optimized water to cement ratio) to obtain a target slump, yet allowing for the end-produced concrete composition to have a target compressive strength.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Applicant: ICRETE INTERNATIONAL, INC.
    Inventor: Per Just Andersen
  • Publication number: 20110004333
    Abstract: Methods for design-optimization of concrete compositions having workability optimized gradation and fixed cement paste volume are disclosed. In particular, the methods allow for designing and manufacturing of concrete compositions having target compressive strengths and slumps and having a fixed volume of cement paste based on target compressive strengths and/or target slump amounts using improved methods that more efficiently utilize all the components from a performance standpoint.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Applicant: ICRETE INTERNATIONAL, INC.
    Inventor: Per Just Andersen
  • Publication number: 20100136269
    Abstract: A method of manufacturing a cementitious composite including: (1) mixing an extrudable cementitious composition by first forming a fibrous mixture comprising fibers, water and a rheology modifying agent and then adding hydraulic cement; (2) extruding the extrudable cementitious composition into a green extrudate, wherein the green extrudate is characterized by being form-stable and retaining substantially a predefined cross-sectional shape; (3) removing a portion of the water by evaporation to reduce density and increase porosity; and (4) heating the green extrudate at a temperature from greater than 65° C. to less than 99° C. is disclosed. Such a process yields a cementitious composite that is suitable for use as a wood substitute. Particularly, by using higher curing temperatures for preparing the cementitious building products, the building products have a lower bulk density and a higher flexural strength as compared to conventional products.
    Type: Application
    Filed: November 24, 2009
    Publication date: June 3, 2010
    Applicant: E. KHASHOGGI INDUSTRIES, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158967
    Abstract: A concrete composition having a 28-day design compressive strength of 3000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 299 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 90 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1697 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1403 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, ¾ inch), about 269 pounds per cubic yard water (e.g., potable water), and about 1.4 fluid ounces of air entraining agent per cwt of hydraulic cement. Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158965
    Abstract: Concrete compositions have a fine-to-coarse particulates ratio optimized for decreased viscosity and increased workability. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the particulates ratio. To improve workability, the concrete compositions include between 49-85% fine particulates (e.g., cement and fine aggregate) and between 15-51% coarse particulates as a percentage of overall particulates volume. For normal strength concrete (up to about 8500 psi, or 58.6 MPa), the fine particulates fraction comprises about 50-75% by volume of total particulates. For high strength concrete (>8500 psi, or 58.6 MPa), the fine particulates fraction comprises about 56-85% by volume of total particulates. Overall workability can be maintained or improved even if slump is decreased.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: iCrete, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158970
    Abstract: Concrete compositions have a fine-to-coarse aggregate ratio optimized for decreased viscosity and increased workability. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the aggregate content. To improve workability, the concrete compositions include between 45% and 65% fine aggregate and between 35% and 55% coarse aggregate as a function of total aggregate volume. For relatively low strength concrete (1500-4500 psi), the fine aggregate is 55-65% of the total aggregate volume. For medium strength concrete (4500-8000 psi), the fine aggregate is 50-60% of the total aggregate volume. For high strength concrete (>8000 psi), the fine aggregate is 45-55% of the total aggregate volume. Overall workability can be maintained or improved even if slump is decreased.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: iCrete, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158969
    Abstract: A concrete composition having a 28-day design compressive strength of 4000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 375 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 113 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1735 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1434 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, ¾ inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158968
    Abstract: A concrete composition having a 28-day design compressive strength of 4000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 375 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 113 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1735 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1434 pounds per cubic yard coarse aggregate (e.g., CA-li state rock, ¾ inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158960
    Abstract: Concrete compositions have a fine-to-coarse aggregate ratio optimized for increased workability with minimal segregation and bleeding. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the aggregate content, while minimizing segregation and bleeding. To improve workability, the concrete compositions include between 45% and 65% fine aggregate and between 35% and 55% coarse aggregate as a function of total aggregate volume. For relatively low strength concrete (1500-4500 psi), the fine aggregate is 55-65% of the total aggregate volume. For medium strength concrete (4500-8000 psi), the fine aggregate is 50-60% of the total aggregate volume. For high strength concrete (>8000 psi), the fine aggregate is 45-55% of the total aggregate volume.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158966
    Abstract: A concrete composition having a 28-day design compressive strength of 3000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 340 pounds per cubic yard hydraulic cement (e.g. Portland cement), about 102 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1757 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1452 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, ¾ inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20080286519
    Abstract: A molded cementitious architectural product for use in building construction has a cementitious body made of a molded cementitious material, the surface of which is polished (i.e., burnished) to better resemble natural stone. The polished surface is formed by exposing a portion of the molded cementitious material while in a green condition, more particularly after initial set but before final hardening of the hydraulic cement binder, and burnishing the surface before final hardening. Burnishing the surface of the green cementitious material before final hardening aligns the cement particles at the surface and seals the surface. The inclusion of an organic polymer binder within the cementitious material, such as an acrylic or latex polymer, assists in creating a polished surface resembling natural polished stone. The extent of cement hydration may be determined by monitoring the temperature of the cementitious material within the mold.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 20, 2008
    Applicant: E. Khashoggi Industries, LLC
    Inventors: Dave Nicolson, Marc J. Stephenson, Per Just Andersen, Simon K. Hodson
  • Patent number: 7386368
    Abstract: Design optimization methods can be used to design concrete mixtures having optimized properties, including desired strength and slump at minimal cost. The design optimization methods use a computer-implemented process that is able to design and virtually “test” millions of hypothetical concrete compositions using mathematical algorithms that interrelate a number of variables that affect strength, slump, cost and other desired features. The design optimization procedure utilizes a constant K (or K factor) within Feret's strength equation that varies (e.g., logarithmically) with concrete strength for any given set of raw material inputs and processing equipment. That means that the binding efficiency or effectiveness of hydraulic cement increases with increasing concentration so long as the concrete remains optimized. The knowledge of how the K factor varies with binding efficiency and strength is a powerful tool that can be applied in multiple circumstances.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 10, 2008
    Assignee: Icrete, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20080099122
    Abstract: A method of manufacturing a cementitious composite includes: (1) forming mixing an extrudable cementitious composition by first forming a fibrous mixture comprising fibers, water and a rheology modifying agent and then adding hydraulic cement; (2) extruding the extrudable cementitious composition into a green extrudate, wherein the green extrudate is characterized by being form-stable and retaining substantially a predefined cross-sectional shape; (3) removing a portion of the water by evaporation to reduce density and increase porosity; and (4) causing or allowing the hydraulic cement to hydrate to form the cementitious composite. Such a process yields a cementitious composite that is suitable for use as a wood substitute. The wood-like building products can be sawed, nailed and screwed like ordinary wood.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 1, 2008
    Applicant: E. Khashoggi Industries LLC
    Inventors: Per Just Andersen, Simon K. Hodson