Patents by Inventor Petar B. Atanackovic

Petar B. Atanackovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8331410
    Abstract: A light emitting device with a ?-cavity including a first spacer of single crystal dielectric material and an active area including single crystal erbium dielectric material positioned on the first spacer. The erbium dielectric material and the single crystal dielectric material of the first spacer are substantially crystal lattice matched at their juncture. A second spacer of single crystal dielectric material is positioned on the active area. The erbium dielectric material and the single crystal dielectric material of the second spacer are substantially crystal lattice matched at the second surface. The high-? erbium dielectric provides a high gain ?-cavity that emits increased amounts of light in either spontaneous or stimulated modes of operation.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: December 11, 2012
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 8106381
    Abstract: The present invention discloses structures to increase carrier mobility using engineered substrate technologies for a solid state device. Structures employing rare-earth compounds enable heteroepitaxy of different semiconductor materials of different orientations.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: January 31, 2012
    Assignee: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Publication number: 20120001171
    Abstract: The present invention discloses structures to increase carrier mobility using engineered substrate technologies for a solid state device. Structures employing rare-earth compounds enable heteroepitaxy of different semiconductor materials of different orientations.
    Type: Application
    Filed: September 14, 2011
    Publication date: January 5, 2012
    Applicant: TRANSLUCENT INC.
    Inventor: Petar B. Atanackovic
  • Patent number: 7967653
    Abstract: A full color display comprising a red, a green, and a blue light emitting diode, each light emitting diode including a light emitting region having at least one layer of single crystal rare earth material, the rare earth material in each of the light emitting diodes having at least one radiative transition, and the rare earth material producing a radiation wavelength of approximately 640 nm in the red light emitting diode, 540 nm in the green light emitting diode, and 460 nm in the blue light emitting diode. Generally, the color of each LED is determined by selecting a rare earth with a radiative transition producing a radiation wavelength at the selected color. In cases where the rare earth has more than one radiative transition, tuned mirrors can be used to select the desired color.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: June 28, 2011
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Publication number: 20110108908
    Abstract: A fully depleted MOSFET has a semiconductor-on-insulator substrate that includes a substrate material, a BOX positioned on the substrate material, and an active layer positioned on the BOX. The BOX includes a first layer of material with a first dielectric constant and a first thickness and a second layer of material having a second dielectric constant different than the first dielectric constant and a second thickness different than the first thickness. The first layer of material is positioned adjacent the substrate material and the second layer of material is positioned adjacent the active layer. Drain and source regions are formed in the active layer so as to be fully depleted. The drain and source regions are separated by a channel region in the active layer. A gate insulating layer overlies the channel region and a gate stack is positioned on the gate insulating region. It is anticipated that the structure is most useful for channel regions less than 90 nm long.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 12, 2011
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7928317
    Abstract: Optimal structures for high efficiency thin film silicon solar energy conversion devices and systems are disclosed. Thin film silicon active layer photoelectron conversion structures using ion implantation are disclosed. Thin film semiconductor devices optimized for exploiting the high energy and ultraviolet portion of the solar spectrum at the earths surface are also disclosed. Solar cell fabrication using high oxygen concentration single crystal silicon substrates formed using in preference the CZ method are used advantageously. Furthermore, the present invention discloses optical coatings for advantageous coupling of solar radiation into thin film solar cell devices via the use of rare-earth metal oxide (REOx), rare-earth metal oxynitride (REOxNy) and rare-earth metal oxy-phosphide (REOxPy) glasses and or crystalline material. The rare-earth metal is chosen from the group commonly known in the periodic table of elements as the lanthanide series.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: April 19, 2011
    Assignee: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Patent number: 7902546
    Abstract: Atomic layer epitaxy (ALE) is applied to the fabrication of new forms of rare-earth oxides, rare-earth nitrides and rare-earth phosphides. Further, ternary compounds composed of binary (rare-earth oxides, rare-earth nitrides and rare-earth phosphides) mixed with silicon and or germanium to form compound semiconductors of the formula RE-(O, N, P)β€”(Si,Ge) are also disclosed, where RE=at least one selection from group of rare-earth metals, O=oxygen, N=nitrogen, P=phosphorus, Si=silicon and Ge=germanium. The presented ALE growth technique and material system can be applied to silicon electronics, opto-electronic, magneto-electronics and magneto-optics devices.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: March 8, 2011
    Assignee: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Patent number: 7821066
    Abstract: A fully depleted MOSFET has a semiconductor-on-insulator substrate that includes a substrate material, a BOX positioned on the substrate material, and an active layer positioned on the BOX. The BOX includes a first layer of material with a first dielectric constant and a first thickness and a second layer of material having a second dielectric constant different than the first dielectric constant and a second thickness different than the first thickness. The first layer of material is positioned adjacent the substrate material and the second layer of material is positioned adjacent the active layer. Drain and source regions are formed in the active layer so as to be fully depleted. The drain and source regions are separated by a channel region in the active layer. A gate insulating layer overlies the channel region and a gate stack is positioned on the gate insulating region. It is anticipated that the structure is most useful for channel regions less than 90 nm long.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: October 26, 2010
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7807917
    Abstract: New thermoelectric materials and devices are disclosed for application to high efficiency thermoelectric power generation. New functional materials based on oxides, rare-earth-oxides, rare-earth-nitrides, rare-earth phosphides, copper-rare-earth oxides, silicon-rare-earth-oxides, germanium-rare-earth-oxides and bismuth rare-earth-oxides are disclosed. Addition of nitrogen and phosphorus are disclosed to optimize the oxide material properties for thermoelectric conversion efficiency. New devices based on bulk and multilayer thermoelectric materials are described. New devices based on bulk and multilayer thermoelectric materials using combinations of at least one of thermoelectric and pyroelectric and ferroelectric materials are described. Thermoelectric devices based on vertical pillar and planar architectures are disclosed. The advantage of the planar thermoelectric effect allows utility for large area applications and is scalable for large scale power generation plants.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: October 5, 2010
    Assignee: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Publication number: 20100112736
    Abstract: A full color display comprising a red, a green, and a blue light emitting diode, each light emitting diode including a light emitting region having at least one layer of single crystal rare earth material, the rare earth material in each of the light emitting diodes having at least one radiative transition, and the rare earth material producing a radiation wavelength of approximately 640 nm in the red light emitting diode, 540 nm in the green light emitting diode, and 460 nm in the blue light emitting diode. Generally, the color of each LED is determined by selecting a rare earth with a radiative transition producing a radiation wavelength at the selected color. In cases where the rare earth has more than one radiative transition, tuned mirrors can be used to select the desired color.
    Type: Application
    Filed: September 28, 2009
    Publication date: May 6, 2010
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7709826
    Abstract: Atomic layer epitaxy (ALE) is applied to the fabrication of new forms of rare-earth oxides, rare-earth nitrides and rare-earth phosphides. Further, ternary compounds composed of binary (rare-earth oxides, rare-earth nitrides and rare-earth phosphides) mixed with silicon and or germanium to form compound semiconductors of the formula RE-(O, N, P)β€”(Si,Ge) are also disclosed, where RE=at least one selection from group of rare-earth metals, O=oxygen, N=nitrogen, P=phosphorus, Si=silicon and Ge=germanium. The presented ALE growth technique and material system can be applied to silicon electronics, opto-electronic, magneto-electronics and magneto-optics devices.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: May 4, 2010
    Assignee: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Publication number: 20100084680
    Abstract: A light emitting device with a p-cavity including a first spacer of single crystal dielectric material and an active area including single crystal erbium dielectric material positioned on the first spacer. The erbium dielectric material and the single crystal dielectric material of the first spacer are substantially crystal lattice matched at their juncture. A second spacer of single crystal dielectric material is positioned on the active area. The erbium dielectric material and the single crystal dielectric material of the second spacer are substantially crystal lattice matched at the second surface. The high-? erbium dielectric provides a high gain ?-cavity that emits increased amounts of light in either spontaneous or stimulated modes of operation.
    Type: Application
    Filed: December 10, 2009
    Publication date: April 8, 2010
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7645517
    Abstract: Atomic layer epitaxy (ALE) is applied to the fabrication of new forms of rare-earth oxides, rare-earth nitrides and rare-earth phosphides. Further, ternary compounds composed of binary (rare-earth oxides, rare-earth nitrides and rare-earth phosphides) mixed with silicon and or germanium to form compound semiconductors of the formula REβ€”(O, N, P)β€”(Si,Ge) are also disclosed, where RE=at least one selection from group of rare-earth metals, O=oxygen, N=nitrogen, P=phosphorus, Si=silicon and Ge=germanium. The presented ALE growth technique and material system can be applied to silicon electronics, opto-electronic, magneto-electronics and magneto-optics devices.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: January 12, 2010
    Assignee: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Patent number: 7643526
    Abstract: A light emitting device with a ?-cavity including a first spacer of single crystal dielectric material and an active area including single crystal erbium dielectric material positioned on the first spacer. The erbium dielectric material and the single crystal dielectric material of the first spacer are substantially crystal lattice matched at their juncture. A second spacer of single crystal dielectric material is positioned on the active area. The erbium dielectric material and the single crystal dielectric material of the second spacer are substantially crystal lattice matched at the second surface. The high-? erbium dielectric provides a high gain ?-cavity that emits increased amounts of light in either spontaneous or stimulated modes of operation.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 5, 2010
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Publication number: 20090291535
    Abstract: A method of horizontally stacking transistors on a common semiconductor substrate is initiated by providing a single crystal, generally silicon, semiconductor substrate. A plurality of transistors are formed on the single crystal semiconductor substrate and encapsulated in an insulating layer, such as silicon dioxide. One or more openings are formed through the insulating layer between the plurality of transistors so as to expose a surface of the single crystal semiconductor substrate. A layer of single crystal rare earth insulator material is epitaxially grown on the exposed surface of the single crystal semiconductor substrate. A layer of single crystal semiconductor material, generally silicon, is epitaxially grown on the layer of single crystal rare earth insulator material. An intermixed transistor is formed on the layer of single crystal semiconductor material.
    Type: Application
    Filed: July 31, 2009
    Publication date: November 26, 2009
    Inventors: Petar B. Atanackovic, Michael Lebby
  • Patent number: 7605531
    Abstract: A full color display comprising a red, a green, and a blue light emitting diode, each light emitting diode including a light emitting region having at least one layer of single crystal rare earth material, the rare earth material in each of the light emitting diodes having at least one radiative transition, and the rare earth material producing a radiation wavelength of approximately 640 nm in the red light emitting diode, 540 nm in the green light emitting diode, and 460 nm in the blue light emitting diode. Generally, the color of each LED is determined by selecting a rare earth with a radiative transition producing a radiation wavelength at the selected color. In cases where the rare earth has more than one radiative transition, tuned mirrors can be used to select the desired color.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: October 20, 2009
    Assignee: Translucent, Inc.
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Publication number: 20090236595
    Abstract: The present invention discloses structures to increase carrier mobility using engineered substrate technologies for a solid state device. Structures employing rare-earth compounds enable heteroepitaxy of different semiconductor materials of different orientations.
    Type: Application
    Filed: October 16, 2007
    Publication date: September 24, 2009
    Applicant: TRANSLUCENT PHOTONICS, INC.
    Inventor: Petar B. Atanackovic
  • Patent number: 7579623
    Abstract: A method of horizontally stacking transistors on a common semiconductor substrate is initiated by providing a single crystal, generally silicon, semiconductor substrate. A plurality of transistors are formed on the single crystal semiconductor substrate and encapsulated in an insulating layer, such as silicon dioxide. One or more openings are formed through the insulating layer between the plurality of transistors so as to expose a surface of the single crystal semiconductor substrate. A layer of single crystal rare earth insulator material is epitaxially grown on the exposed surface of the single crystal semiconductor substrate. A layer of single crystal semiconductor material, generally silicon, is epitaxially grown on the layer of single crystal rare earth insulator material. An intermixed transistor is formed on the layer of single crystal semiconductor material.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: August 25, 2009
    Assignee: Translucent, Inc.
    Inventors: Petar B. Atanackovic, Michael Lebby
  • Publication number: 20090183774
    Abstract: The present invention relates to semiconductor devices suitable for electronic, optoelectronic and energy conversion applications. In a particular form, the present invention relates to the fabrication of a thin film solar energy conversion device and wafer scale module through the combination of single crystal semiconductors, insulators, rare-earth based compounds and sapphire substrates. The use of thin film silicon allows large change in optical absorption co-efficient as a function of wavelength to be optimized for solar cell operation. New types of solar cell devices are disclosed for use as selective solar radiation wavelength absorbing sections to form multi-junction device and exceed single junction limit, without the use of different band gap semiconductors.
    Type: Application
    Filed: July 10, 2008
    Publication date: July 23, 2009
    Applicant: Translucent, Inc.
    Inventor: Petar B. Atanackovic
  • Publication number: 20090085115
    Abstract: A method of fabricating semiconductor components in-situ and in a continuous integrated sequence includes the steps of providing a single crystal semiconductor substrate, epitaxially growing a first layer of rare earth insulator material on the semiconductor substrate, epitaxially growing a first layer of semiconductor material on the first layer of rare earth insulator material, epitaxially growing a second layer of rare earth insulator material on the first layer of semiconductor material, and epitaxially growing a second layer of semiconductor material on the second layer of rare earth insulator material. The first layer of rare earth insulator material, the first layer of semiconductor material, the second layer of rare earth insulator material, and the second layer of semiconductor material form an in-situ grown structure of overlying layers. The in-situ grown structure is etched to define a semiconductor component and electrical contacts are deposited on the semiconductor component.
    Type: Application
    Filed: December 9, 2008
    Publication date: April 2, 2009
    Applicant: TRANSLUCENT INC.
    Inventor: Petar B. Atanackovic