Patents by Inventor Peter C. Van Buskirk

Peter C. Van Buskirk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170137940
    Abstract: An apparatus and method is described to coat small and large quantities of solid particles using atomic layer deposition, with increased material utilization and decreased cycle times. The resulting higher coating efficiency ALD process is achieved by a controlled pressure differential acting across a rotating porous vessel that contains a plurality of solid particles. The apparatus is comprised of two coaxial cylindrical porous vessels with a means for one to rotate, and a two stage rotary feedthrough with a specialized hollowed out shaft, which enables both rotation of the vessel and reactant, purge, and product gas transport across a particle bed that undergoes mixing.
    Type: Application
    Filed: November 12, 2016
    Publication date: May 18, 2017
    Inventors: Anthony F. Zeberoff, Jeffrey F. Roeder, Peter C. Van Buskirk
  • Publication number: 20170018782
    Abstract: A novel method to modify the surface of lanthanum and strontium containing cathode powders before or after sintering by depositing layers of gadolinium doped ceria (GDC) and/or samarium doped ceria or similar materials via atomic layer deposition on the powders. The surface modified powders are sintered into porous cathodes that have utility enhancing the electrochemical performance of the cathodes, particularly for use in solid oxide fuel cells. Similar enhancements are observed for surface treatment of sintered cathodes.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 19, 2017
    Inventors: Jeffrey F. Roeder, Anthony F. Zeberoff, Peter C. Van Buskirk
  • Patent number: 9480766
    Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: November 1, 2016
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
  • Publication number: 20160181627
    Abstract: A novel method to produce thin films spatially disposed on desired areas of workpieces is disclosed. Examples of include the formation of a yttria stabilized zirconia (YSZ) film formed on a desired portion of a stainless steel interconnect for solid oxide fuel cells by Atomic Layer Deposition (ALD). A number of methods to produce the spatially disposed YSZ film structures are described including polymeric and silicone rubber masks. The thin film structures have utility for preventing the reaction of glasses with metals, in particular alkali-earth containing glasses with ferritic stainless steels, allowing high temperature bonding of these materials.
    Type: Application
    Filed: December 20, 2015
    Publication date: June 23, 2016
    Inventors: Jeffrey F. Roeder, Peter C. Van Buskirk
  • Publication number: 20150298891
    Abstract: Fluid supply systems for storage and dispensing of chemical reagents and compositions, e.g., high purity liquid reagents and chemical mechanical polishing compositions used to manufacture microelectronic device products, having capability for detection of an empty or near-empty condition when the contained liquid is at or approaching depletion during dispensing operation. Fluid delivery systems employing empty detect arrangements are described, including pressure transducer monitoring of dispensed material intermediate the supply package and a servo-hydraulic dispense pump, or monitoring of dispenser chamber replenishment times in a dispenser being replenished on a cyclic schedule to flow material from the dispenser to a downstream tool utilizing the dispensed material.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 22, 2015
    Inventors: Minna HOVINEN, John R. KINGERY, Glenn M. TOM, Kevin T. O'DOUGHERTY, Kirk MIKKELSEN, Donald D. WARE, Peter C. VAN BUSKIRK
  • Patent number: 9073028
    Abstract: Fluid supply systems for storage and dispensing of chemical reagents and compositions, e.g., high purity liquid reagents and chemical mechanical polishing compositions used to manufacture microelectronic device products, having capability for detection of an empty or near-empty condition when the contained liquid is at or approaching depletion during dispensing operation. Fluid delivery systems employing empty detect arrangements are described, including pressure transducer monitoring of dispensed material intermediate the supply package and a servo-hydraulic dispense pump, or monitoring of dispenser chamber replenishment times in a dispenser being replenished on a cyclic schedule to flow material from the dispenser to a downstream tool utilizing the dispensed material.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 7, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Minna Hovinen, John R. Kingery, Glenn M. Tom, Kevin T. O'Dougherty, Kirk Mikkelsen, Donald D. Ware, Peter C. Van Buskirk
  • Publication number: 20150111725
    Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
  • Publication number: 20150110679
    Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
  • Publication number: 20130324390
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Patent number: 8322571
    Abstract: Fluid supply systems for storage and dispensing of chemical reagents and compositions, e.g., high purity liquid reagents and chemical mechanical polishing compositions used to manufacture microelectronic device products, having capability for detection of an empty or near-empty condition when the contained liquid is at or approaching depletion during dispensing operation. Fluid delivery systems employing empty detect arrangements are described, including pressure transducer monitoring of dispensed material intermediate the supply package and a servo-hydraulic dispense pump, or monitoring of dispenser chamber replenishment times in a dispenser being replenished on a cyclic schedule to flow material from the dispenser to a downstream tool utilizing the dispensed material.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 4, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Minna Hovinen, John R. Kingery, Glenn M. Tom, Kevin T. O'Dougherty, Kirk Mikkelsen, Donald D. Ware, Peter C. Van Buskirk
  • Patent number: 8282023
    Abstract: Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 9, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, James V. McManus, Steven J. Hultquist, Jose I. Arno, Peter C. Van Buskirk
  • Publication number: 20110226874
    Abstract: Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: W. Karl Olander, James V. McManus, Steven J. Hultquist, Jose I. Arno, Peter C. Van Buskirk
  • Patent number: 7951225
    Abstract: Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: May 31, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, James V. McManus, Steven J. Hultquist, Jose I. Arno, Peter C. Van Buskirk
  • Publication number: 20110097478
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Application
    Filed: December 23, 2010
    Publication date: April 28, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Patent number: 7862857
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 4, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Publication number: 20100213083
    Abstract: Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
    Type: Application
    Filed: May 3, 2006
    Publication date: August 26, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: W. Karl Olander, James V. McManus, Steven J. Hultquist, Jose I. Arno, Peter C. Van Buskirk
  • Publication number: 20100209596
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Application
    Filed: April 27, 2010
    Publication date: August 19, 2010
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daneil J. Vestyck, Thomas H. Baum
  • Patent number: 7705382
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 27, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Publication number: 20090314798
    Abstract: Fluid supply systems for storage and dispensing of chemical reagents and compositions, e.g., high purity liquid reagents and chemical mechanical polishing compositions used to manufacture microelectronic device products, having capability for detection of an empty or near-empty condition when the contained liquid is at or approaching depletion during dispensing operation. Fluid delivery systems employing empty detect arrangements are described, including pressure transducer monitoring of dispensed material intermediate the supply package and a servo-hydraulic dispense pump, or monitoring of dispenser chamber replenishment times in a dispenser being replenished on a cyclic schedule to flow material from the dispenser to a downstream tool utilizing the dispensed material.
    Type: Application
    Filed: April 25, 2006
    Publication date: December 24, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Minna Hovinen, John R. Kingery, Glenn M. Tom, Kevin T. O'Dougherty, Kirk Mikkelsen, Donald D. Ware, Peter C. Van Buskirk
  • Publication number: 20090248587
    Abstract: A ridesharing system and method involving selected negotiated participation of riders and ride providers. The ridesharing system in a specific implementation involves a computer-implemented capability for computational matching of potential participants in a ridesharing arrangement, wherein such system is adapted for prioritized ranking of target ridesharing attributes by such potential participants, involving allocation by potential participants of quantitative weight within a quantitative total budget of allocatable value to predetermined selection criteria, with such system having an input capability for inputting the allocations of potential participants, and the system being constructed and arranged for effecting the computational matching based on the allocations, with communication capability for outputting results of the computational matching to the potential participants.
    Type: Application
    Filed: August 30, 2008
    Publication date: October 1, 2009
    Inventor: Peter C. VAN BUSKIRK