Patents by Inventor Peter Krulevitch

Peter Krulevitch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7578976
    Abstract: A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: August 25, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: M. Allen Northrup, Barton V. Beeman, William J. Benett, Dean R. Hadley, Phoebe Landre, Stacy L. Lehew, Peter A. Krulevitch
  • Publication number: 20090209030
    Abstract: A thermalcycler is constructing with a first thermalcycler body section of a flexible circuit material or a circuit board material. The first thermalcycler body section has a first face. A first cavity portion is formed in the first face. A second thermalcycler body section is constructed of a flexible circuit material or a circuit board material. The second thermalcycler body section has a second face. A second cavity portion is formed in the second face. When the first cavity portion and the second cavity portion are positioned together they form a cavity. A thermalcycler unit is positioned in the cavity. The first thermalcycler body section and the second thermalcycler body section are connected together with the first face and the face opposed to each other and the thermalcycler unit operatively connected to the first cavity portion and the second cavity portion.
    Type: Application
    Filed: March 31, 2009
    Publication date: August 20, 2009
    Inventors: William J. Benett, James B. Richards, Paul L. Stratton, Elizabeth K. Wheeler, Peter Krulevitch, Steve Visuri, John M. Dzenitis
  • Publication number: 20090149918
    Abstract: An antenna implantable through minimally invasive techniques, preferably comprising a coil with conductive probes is provided. The antenna is preferably superelastic nickel-titanium having an insulative coating. The antenna may conduct a signal originating from a device external to the body of the implantee, or from another implanted device connected to the antenna depending on whether the antenna is employed for sending, receiving, or transceiving signals. Signals may contain data, operational commands, and may be used to transfer power. The implantable antenna may be connected to another implanted device, such as a blood pressure monitor, or may be implanted as a stand-alone device for purposes such as stimulating tissue.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Inventors: Peter Krulevitch, Michael R. Tracey, Stuart Wenzel
  • Publication number: 20090112185
    Abstract: A medical device includes a medical device flexible conduit that has an elongated Nitinol strip with a distal end, a proximal end, a longitudinal axis running from the distal end to the proximal end, a sharp head extending from the distal end, and a channel etched therein. Moreover, the channel is dispositioned along the longitudinal axis. The medical device flexible conduit also has a flexible tube at least partially jacketing the elongated Nitinol strip between the distal end and the proximal end, with the channel and the flexible tube defining a conduit. The medical device also includes an insertion mechanism configured to insert a portion of the flexible conduit, including the sharp head, into a user's target site such that the conduit provides fluid communication to the target site.
    Type: Application
    Filed: October 30, 2008
    Publication date: April 30, 2009
    Applicant: LifeScan, Inc.
    Inventors: Peter Krulevitch, Frank Cichocki, Lorin P. Olson
  • Publication number: 20090112155
    Abstract: The invention relates to micropumps for infusing fluids. More specifically, the present disclosure describes and illustrates a micropump design that may be useful for infusing insulin into a diabetic patient. The disclosed design employs a pump chamber that has a diaphragm and a plurality of check valves that are configured to avoid leakage from the reservoir through the pump engine and into an infusion device and, also, to ensure the complete, accurate evacuation of the pump chamber.
    Type: Application
    Filed: October 30, 2008
    Publication date: April 30, 2009
    Applicant: LifeScan, Inc.
    Inventors: Mitch Zhao, Peter Krulevitch, David Knight, Anthony Lam, Sean O'Connor
  • Publication number: 20090112169
    Abstract: A medical device flexible conduit includes an elongated Nitinol strip with a distal end, a proximal end, a longitudinal axis running from the distal end to the proximal end, a sharp head extending from the distal end, and a channel etched therein. Moreover, the channel is dispositioned along the longitudinal axis. The medical device flexible conduit also includes a flexible tube at least partially jacketing the elongated Nitinol strip between the distal end and the proximal end with the channel and the flexible tube defining a conduit. A method for manufacturing a medical device flexible conduit includes etching a channel into an elongated Nitinol strip and forming a sharp head on a distal end of the elongated Nitinol strip. The method also includes subsequently jacketing the flat elongated Nitinol strip with a flexible tube such that the flexible tube and channel define a conduit.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 30, 2009
    Applicant: Animas Corporation
    Inventors: Peter KRULEVITCH, Frank Cichocki, Lorin P. Olson
  • Publication number: 20090112180
    Abstract: A method for inserting a medical device flexible conduit into a user's target site includes adhering a medical device to a user with the medical device including a medical device flexible conduit and an insertion mechanism. Moreover, the medical device flexible conduit has an elongated Nitinol strip with a distal end, a proximal end, a longitudinal axis running from the distal end to the proximal end, a sharp head extending from the distal end, and a channel etched therein. In addition, the channel is dispositioned along the longitudinal axis. The medical device flexible conduit also includes a flexible tube at least partially jacketing the elongated Nitinol strip between the distal end and the proximal end, the channel and flexible tube defining a conduit. The insertion mechanism is configured to insert a portion of the flexible conduit including the sharp head into a user's target site such that the conduit provides fluid communication to the target site.
    Type: Application
    Filed: October 31, 2008
    Publication date: April 30, 2009
    Applicant: LifeScan, Inc.
    Inventors: Peter Krulevitch, Frank Cichocki, Lorin P. Olson
  • Publication number: 20080312558
    Abstract: A flexible conduit insertion medical device includes a flexible medical device conduit and an insertion mechanism. The flexible medical device conduit includes an elongated framework formed from a flexible material (e.g., Nitinol) with a body portion, sharp head, distal end and proximal end. The flexible medical device conduit also includes a flexible tube at least partially jacketing the elongated framework between the distal end and the proximal end. Moreover, the sharp head is disposed at the distal end and is configured for subcutaneous skin insertion and the elongated framework and flexible tube define at least one conduit between the elongated framework and the flexible tube, the conduit having an opening at the distal end. The insertion mechanism is operatively connected to the flexible medical device conduit and configured to insert a portion of the flexible medical device conduit, including at least the sharp head and the opening, into a user's skin target site.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 18, 2008
    Inventors: Peter Krulevitch, Lorin P. Olson
  • Publication number: 20080312582
    Abstract: A method for inserting a flexible medical device conduit includes adhering a flexible conduit insertion medical device, with a flexible medical device conduit and an integrated insertion mechanism, to a target site. Moreover, the flexible medical device conduit has an elongated framework formed from a flexible material (e.g., Nitinol) with a body portion, sharp head, distal end and proximal end. The flexible medical device conduit also has a flexible tube at least partially jacketing the elongated framework between the distal end and the proximal end. In addition, the sharp head is disposed at the distal end and is configured for subcutaneous skin insertion and the elongated framework and flexible tube define at least one conduit between the elongated framework and the flexible tube, the conduit having an opening at the distal end.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 18, 2008
    Inventors: Peter Krulevitch, Lorin P. Olson
  • Publication number: 20080312600
    Abstract: A flexible medical device conduit includes an elongated framework formed from a flexible material (e.g., Nitinol) with a body portion, sharp head, distal end and proximal end. The flexible medical device conduit also includes a flexible tube at least partially jacketing the elongated framework between the distal end and the proximal end. Moreover, the sharp head is disposed at the distal end and is configured for subcutaneous skin insertion and the elongated framework and flexible tube define at least one conduit between the elongated framework and the flexible tube, the conduit having an opening at the distal end.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 18, 2008
    Inventors: Peter Krulevitch, Lorin P. Olson, Zara Sieh, Donna Savage
  • Publication number: 20080308523
    Abstract: A method for manufacturing a flexible medical device conduit includes forming an elongated framework of flexible material (e.g., Nitinol), and creating a sharp head on a distal end of the elongated strip using, for example, an isotropic etching technique, a stamping technique and/or a coining technique. The method also includes the step of jacketing the elongated framework with a flexible tube such that the flexible tube and the elongated framework define at least one conduit therebetween.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 18, 2008
    Inventors: Peter Krulevitch, Lorin P. Olson, Frank R. Cichocki, JR.
  • Patent number: 7462518
    Abstract: A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: December 9, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mariam N. Maghribi, Peter Krulevitch, Julie Hamilton
  • Patent number: 7413711
    Abstract: A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: August 19, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: William J. Benett, Peter A. Krulevitch, Steven R. Visuri, John M. Dzenitis, Kevin D. Ness
  • Publication number: 20080149268
    Abstract: A method for preparing an electrokinetic element is provided and generally includes providing a porous membrane adapted for use in an electrokinetic pump and encapsulating the porous membrane within a polymer substrate to yield an electrokinetic element base member having the porous membrane encapsulated by the polymer. In one embodiment, the method can include laminating the porous membrane between opposed sheets of a polymer before the step of encapsulating. The method can also include cutting the electrokinetic element base member into a plurality of slices and assembling an electrokinetic infusion pump by inserting a slice into a chamber of the pump.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Applicant: LifeScan, Inc.
    Inventors: Mingqi Zhao, Mark Huang, Stan Thomas, Peter Krulevitch
  • Publication number: 20080154187
    Abstract: The present application is directed to systems and methods associated with infusion pumps, which can optionally utilize an electrokinetic driving mechanism. Infusion pumps, including electrokinetically-driven pumps, are discussed, along with schemes for controlling their operation. As well, systems and methods of detecting malfunctions in infusion pumps are discussed. Any number of malfunctions can be detected including the presence of occlusions and/or leaks. In some instances, a measurement associated with some aspect of electrokinetic phenomena (e.g., an electrode measurement such as voltage or current) is compared with one or more sample values, the comparison allowing an indication of pump malfunction to be determined. A variety of such measurements and comparison techniques are discussed in the present disclosure.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Applicant: LifeScan, Inc.
    Inventors: Peter Krulevitch, Mingqi Zhao, Sebastian Bohm, Deon Anex, Michael Gearhart
  • Patent number: 7342311
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 11, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Patent number: 7337012
    Abstract: A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: February 26, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mariam N. Maghribi, Peter A. Krulevitch, James Courtney Davidson, Thomas S. Wilson, Julie K. Hamilton, William J. Benett, Armando R. Tovar
  • Publication number: 20080026138
    Abstract: A stretchable electronic apparatus and method of producing the apparatus. The apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body, and at least one circuit line operatively connected to the stretchable polymer body, the at least one circuit line extending in the longitudinal direction and having a longitudinal component that extends in the longitudinal direction and having an offset component that is at an angle to the longitudinal direction, the longitudinal component and the offset component allowing the apparatus to stretch in the longitudinal direction while maintaining the integrity of the at least one circuit line.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 31, 2008
    Inventors: Mariam Maghribi, Peter Krulevitch, Thomas Wilson, Julie Hamilton, Christina Park
  • Patent number: 7265298
    Abstract: A stretchable electronic apparatus and method of producing the apparatus. The apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body, and at least one circuit line operatively connected to the stretchable polymer body, the at least one circuit line extending in the longitudinal direction and having a longitudinal component that extends in the longitudinal direction and having an offset component that is at an angle to the longitudinal direction, the longitudinal component and the offset component allowing the apparatus to stretch in the longitudinal direction while maintaining the integrity of the at least one circuit line.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: September 4, 2007
    Assignee: The Regents of the University of California
    Inventors: Mariam N. Maghribi, Peter A. Krulevitch, Thomas S. Wilson, Julie K. Hamilton, Christina Park
  • Publication number: 20070142878
    Abstract: An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.
    Type: Application
    Filed: October 10, 2006
    Publication date: June 21, 2007
    Inventors: Peter Krulevitch, Dennis Polla, Mariam Maghribi, Julie Hamilton, Mark Humayun, James Weiland