Patents by Inventor Peter Lindqvist
Peter Lindqvist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190299944Abstract: The invention relates to an electric brake system (1) for a vehicle. The electric brake system (1) comprises electric brake devices (2). The electric brake devices (2) are powered and controlled by redundant capacitor-based power sources (9A, 9B) and redundant control circuits (16A, 16B). The capacitor-based power source (9A, 9B) can be integrated into axle modules (39A, 39B) located close to a vehicle axle (61A, 61B). The capacitor-based power sources (9A, 9B) are recharged by a hub generator, a regeneration power source (32).Type: ApplicationFiled: June 20, 2019Publication date: October 3, 2019Inventors: Anders Nilsson, Anders Lindqvist, Peter Nilsson
-
Patent number: 10367677Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.Type: GrantFiled: May 13, 2016Date of Patent: July 30, 2019Assignee: Telefonaktiebolaget LM Ericsson (publ)Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rul Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskár, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanil Zheng
-
Patent number: 10175277Abstract: A system and method is provided for identifying degrading electrodes in a marine electromagnetic survey system. A system may comprise a sensor array operable for use in a marine electromagnetic survey system, wherein the sensor array comprises a plurality of electrodes. The system may comprise a shunt resistor connected to the electrodes and a processor operable to vary a resistance of the shunt resistor in the presence of a voltage across the electrodes. A method for identifying degrading electrodes may comprise measuring an electric field in a body of water with a pair of electrodes, wherein a shunt resistor is connected between the pair of electrodes. The method may comprise varying a resistance of the shunt resistor. The method may comprise measuring a voltage across the shunt resistor while varying the resistance of the shunt resistor to obtain measured voltages for different shunt resistor values.Type: GrantFiled: August 17, 2016Date of Patent: January 8, 2019Assignee: PGS Geophysical ASInventors: Andras Robert Juhasz, Ulf Peter Lindqvist
-
Publication number: 20180329106Abstract: A method and apparatus for a streamer having a total field magnetometer (“TFM”). A streamer includes a plurality of TFMs in proximity with one another and distributed symmetrically about an axis of the streamer. A streamer includes a first subset of TFMs in a streamer section and in proximity with one another; a second subset in the streamer section and in proximity with one another; wherein the first subset is not in proximity with the second subset. A method includes towing a streamer through a body of water, the streamer comprising first and second TFMs; acquiring magnetic data with the first and the second TFMs; and reducing noise in the data based on at least one of: averaging data from the first and the second TFMs; filtering data from the first and the second TFMs; estimating motion of the first TFM; and estimating rotation of the first TFM.Type: ApplicationFiled: March 12, 2018Publication date: November 15, 2018Inventors: Peter LINDQVIST, Robert JUHASZ, Johan MATTSSON
-
Patent number: 10042073Abstract: Aspects described herein provide for a sensor assembly having an electrically isolated cable segment that may be used for geophysical prospecting. The sensor assembly generally includes a first cable segment comprising at least one electromagnetic (EM) sensor, and a second cable segment connected to the first cable segment and electrically isolated from the first cable segment. The second cable segment may be free of electrically conductive components. Alternatively, the second cable segment may have electrically conductive components that are not electrically connected to the first cable segment. The electrically isolated cable segment may reduce or eliminate undesired signal cross-feed from the EM source to the first cable segment, which may aid in maintaining data quality.Type: GrantFiled: January 12, 2015Date of Patent: August 7, 2018Assignee: PGS Geophysical ASInventors: Lars Erik Magnus Björnemo, Ulf Peter Lindqvist
-
Patent number: 9941029Abstract: Embodiments described herein provide an EM source cable assembly with a buoyant member having first and second ends, and a longitudinal axis connecting the first end to the second end, and a plurality of indentations disposed along a surface of the buoyant member between the first end and the second end, wherein the indentations are operable to receive corresponding cables. The indentations extend along the longitudinal axis, and may be arranged helically about the longitudinal axis. The buoyant member may have a low density core material and a dense outer material, each of which may be a polymeric material. The low density material may be a foam, and the buoyant member may be formed by coextruding the low density material and the dense outer material.Type: GrantFiled: February 21, 2014Date of Patent: April 10, 2018Assignee: PGS Geophysical ASInventors: James Mackay, Philip Heelan, Peter Lindqvist
-
Patent number: 9798029Abstract: A sensor streamer stretch section. At least some of the example embodiments are methods including measuring at least one parameter related to noise while towing the sensor streamer through a body of water with a towing vessel, and adjusting at least one of a spring constant and a damping coefficient of a stretch section disposed proximate the sensor streamer such that the measured parameter is minimized.Type: GrantFiled: May 11, 2015Date of Patent: October 24, 2017Assignee: PGS Geophysical ASInventors: Andras Robert Juhasz, Gustav Göran Mattias Südow, Rune Johan Magnus Mattsson, Ulf Peter Lindqvist
-
Patent number: 9778036Abstract: Electromagnetic streamer cables and methods of use. Example systems include: a first electrode, the first electrode at a first location along the streamer cable; a second electrode at a second location along the streamer cable; a first sensor module electrically coupled to the first electrode and second electrode, the first sensor module configured to measure a voltage across the first and second electrodes; a third electrode at a third location between the first and second electrodes; a fourth electrode at a fourth location along the streamer cable, the fourth location distal to the second location; and a second sensor module electrically coupled to the third electrode and fourth electrode, the second sensor module configured to measure a voltage across the third and fourth electrodes.Type: GrantFiled: May 20, 2014Date of Patent: October 3, 2017Assignee: PGS Geophysical ASInventors: Robert Juhasz, U. Peter Lindqvist, Gustav Göran Mattias Südow
-
Patent number: 9766361Abstract: Disclosed are methods and apparatus for electromagnetic surveying using dynamically-selected source waveforms. In accordance with an embodiment of the invention, a source waveform is adapted by dynamically selecting a source waveform from the set of pre-calculated waveform sequences. The dynamic selection of the source waveform may depend on a measured background noise level. Other embodiments, aspects, and features are also disclosed.Type: GrantFiled: October 10, 2014Date of Patent: September 19, 2017Assignee: PGS Geophysical ASInventors: Robert Juhasz, Peter Lindqvist
-
Patent number: 9733377Abstract: Depth and tilt control systems for geophysical sensor streamers and methods of use are discussed. Such systems may include a plurality of tilt sensors disposed at spaced apart locations along the geophysical sensor streamer, each tilt sensor having a first tilt sensing element arranged to measure tilt of the geophysical sensor streamer proximate the associated spaced apart location, a plurality of LFD control devices, each disposed proximate one of the tilt sensors along the geophysical sensor streamer, and a plurality of microcontrollers, each microcontroller in signal communication with at least one of the LFD control devices and its associated tilt sensor, wherein each microcontroller is capable of utilizing the tilt measured by the associated tilt sensor to selectively operate the associated LFD control device to cause the geophysical sensor streamer to align with a selected depth profile.Type: GrantFiled: January 27, 2015Date of Patent: August 15, 2017Assignee: PGS Geophysical, A.S.Inventors: Gustav Göran Mattias Südow, Ulf Peter Lindqvist, Andras Robert Juhasz
-
Publication number: 20170227668Abstract: A method and system for estimation of electromagnetic earth responses in a marine electromagnetic survey. A method may comprise estimating initial values of the electromagnetic earth responses and ambient noise applicable to the marine electromagnetic survey; and processing electromagnetic data based on the initial values of the electromagnetic earth responses and the ambient noise to obtain a joint estimation of updated values of the electromagnetic earth responses and the ambient noise, wherein the electromagnetic data was acquired with one or more electromagnetic sensors, wherein the electromagnetic data contains measurements of an electromagnetic field.Type: ApplicationFiled: August 18, 2015Publication date: August 10, 2017Applicant: PGS Geophysical ASInventors: Johan Mattsson, Peter Lindqvist, Erik Björnemo
-
Patent number: 9720123Abstract: Disclosed are methods and systems that include a multiple-tube electrode assembly. An embodiment discloses an electrode assembly, comprising: a carrier body comprising an elongated support; and electrically conducting surfaces longitudinally spaced along the carrier body, wherein the electrically conducting surfaces are electrically coupled in parallel.Type: GrantFiled: June 12, 2012Date of Patent: August 1, 2017Assignee: PGS Geophysical ASInventors: James Ewan Mackay, Oliver Colin Peppe, Prawin K. Bhadani, Ulf Peter Lindqvist, Richard Samuel Bailie
-
Patent number: 9696449Abstract: Disclosed are methods and systems for conditioning electrodes while deployed in the sea with a marine electromagnetic survey system. An embodiment of the method may comprise deploying electrodes in seawater during a marine electromagnetic survey. The method further may comprise coupling at least one of the electrodes to a controllable current/voltage source while the electrodes are deployed in the seawater. The method further may comprise sending a first conditioning signal from the controllable current/voltage source to the at least one of the electrodes coupled to the controllable current/voltage source.Type: GrantFiled: May 23, 2016Date of Patent: July 4, 2017Assignee: PGS Geophysical ASInventors: Robert Andras Juhasz, Ulf Peter Lindqvist
-
Patent number: 9663192Abstract: A method for towing marine geophysical sensor streamers in a body of water includes moving a towing vessel at a selected speed along the surface of the body of water. At least one geophysical sensor streamer is towed by the vessel at a selected depth in the water. A velocity of the streamer in the water is measured at at least one position along the streamer. The selected speed of the towing vessel is adjusted if the measured velocity is outside of a selected range.Type: GrantFiled: January 19, 2012Date of Patent: May 30, 2017Assignee: PGS Geophysical ASInventors: Gustav Göran Mattias Südow, Ulf Peter Lindqvist, Andras Robert Juhasz, Rune Johan Magnus Mattsson
-
Patent number: 9625600Abstract: Methods and systems for determining and removing swell noise from electric field data collected from streamers towed at different are disclosed. In one aspect, a first set of streamers called upper streamers is towed at a shallow depth, and the second set of streamers called lower streamers is towed below the upper streamers. Receivers located along the streamers measure surrounding electric fields and produce electric field signals. A proportionality parameter is calculated as a function of the electric field signals generated by vertically aligned receivers. The proportionality parameter can be used to calculate an approximate swell noise that is used to remove swell noise from electric field data measured by the receivers.Type: GrantFiled: December 4, 2012Date of Patent: April 18, 2017Assignee: PGS Geophysical ASInventors: Robert Juhasz, Peter Lindqvist
-
Patent number: 9606256Abstract: Determining parameters associated with a hydrocarbon bearing formation beneath a sea bed. At least some of the illustrative embodiments are methods including: obtaining data gathered regarding a plurality of distinct readings by sensors, the readings responsive to a source of electrical energy towed in water above the hydrocarbon bearing formation, the sensors sense an electrical parameter associated with the source; combining a first datum associated with a first path of travel of the source with a second datum associated with a second path of travel of the source, the second path of travel distinct from the first path of travel, and the combining creates a first combined datum; and determining the parameter associated with the hydrocarbon bearing formation by evaluating the first combined datum.Type: GrantFiled: December 7, 2011Date of Patent: March 28, 2017Assignee: PGS Geophysical ASInventors: U. Peter Lindqvist, L. Erik Magnus Bjornemo
-
Publication number: 20170059726Abstract: Measured marine survey data can be processed analogously to modeled marine survey data analogously and a misfit can be calculated between the processed measured marine survey data and the processed modeled marine survey data. A model parameter in the modeled marine survey data can be updated based on the misfit. The model parameter can be a parameter of a subsurface location.Type: ApplicationFiled: June 14, 2016Publication date: March 2, 2017Applicant: PGS Geophysical ASInventors: Ulf Peter Lindqvist, Lars Erik Magnus Bjornemo
-
Publication number: 20170059502Abstract: A system and method is provided for identifying degrading electrodes in a marine electromagnetic survey system. A system may comprise a sensor array operable for use in a marine electromagnetic survey system, wherein the sensor array comprises a plurality of electrodes. The system may comprise a shunt resistor connected to the electrodes and a processor operable to vary a resistance of the shunt resistor in the presence of a voltage across the electrodes. A method for identifying degrading electrodes may comprise measuring an electric field in a body of water with a pair of electrodes, wherein a shunt resistor is connected between the pair of electrodes. The method may comprise varying a resistance of the shunt resistor. The method may comprise measuring a voltage across the shunt resistor while varying the resistance of the shunt resistor to obtain measured voltages for different shunt resistor values.Type: ApplicationFiled: August 17, 2016Publication date: March 2, 2017Applicant: PGS Geophysical ASInventors: Andras Robert Juhasz, Ulf Peter Lindqvist
-
Publication number: 20160306067Abstract: Disclosed are methods and systems for conditioning electrodes while deployed in the sea with a marine electromagnetic survey system. An embodiment of the method may comprise deploying electrodes in seawater during a marine electromagnetic survey. The method further may comprise coupling at least one of the electrodes to a controllable current/voltage source while the electrodes are deployed in the seawater. The method further may comprise sending a first conditioning signal from the controllable current/voltage source to the at least one of the electrodes coupled to the controllable current/voltage source.Type: ApplicationFiled: May 23, 2016Publication date: October 20, 2016Applicant: PGS Geophysical ASInventors: Robert Andras Juhasz, Ulf Peter Lindqvist
-
Patent number: 9459368Abstract: An electromagnetic survey acquisition system includes a sensor cable and a source cable, each deployable in a body of water, and a recording system. The sensor cable includes an electromagnetic sensor thereon. The source cable includes an electromagnetic antenna thereon. The recording system includes a source current generator, a current sensor, and an acquisition controller. The source current generator powers the source cable to emit an electromagnetic field from the antenna. The current sensor is coupled to the source current generator. The acquisition controller interrogates the electromagnetic sensor and the current sensor at selected times in a synchronized fashion.Type: GrantFiled: October 20, 2014Date of Patent: October 4, 2016Assignee: PGS Geophysical ASInventors: Andras Robert Juhasz, Gustav Göran Mattias Südow, Ulf Peter Lindqvist