Patents by Inventor Peter Trefonas, III

Peter Trefonas, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170084847
    Abstract: Aspects of the invention provide a composition having a blend of an electron transport material and an organo alkali-metal salt wherein the salt has a glass transition greater than 115° C. The organo-alkali metal salt may be selected from the group consisting of lithium 2-(2-pyridyl)phenolate (LiPP), lithium 2-(2?,2?-bipyridine-6?-yl)phenolate (LiBPP), 2-(isoquinoline-10-yl)phenolate (LiIQP), and lithium 2-(2-phenylquinazolin-4-yl)phenolate and lithium 2-(4-phenylquinazolin-2-yl)phenolate. In a preferred embodiment, the organo-alkali metal salt is lithium 2-(2?,2?-bipyridine-6?-yl)phenolate (LiBPP). Aspects of the invention also provide films and devices having a film layer prepared from the composition.
    Type: Application
    Filed: March 29, 2016
    Publication date: March 23, 2017
    Inventors: Timothy S. De Vries, Kenneth L. Kearns, JR., Travis E. McIntire, Sukrit Mukhopadhyay, Peter Trefonas, III, William H. H. Woodward
  • Publication number: 20170073453
    Abstract: Polymeric reaction products of certain aromatic alcohols with certain aromatic aldehydes are useful as underlayers in semiconductor manufacturing processes.
    Type: Application
    Filed: November 29, 2016
    Publication date: March 16, 2017
    Inventors: Li CUI, Sung Wook CHO, Mingqi LI, Shintaro YAMADA, Peter TREFONAS, III, Robert L. AUGER
  • Publication number: 20170054100
    Abstract: The present invention is directed to a process for preparing a hole transport layer in which a hole transport composition comprising a blend of a hole transport material and transition metal oxide or metal sulfide nanoparticles is deposited as a solution onto a substrate, such as an anode, and then is annealed in a subsequent step. It has been discovered that annealing the hole transport layer comprising the blend of an hole transport material and transition metal nanoparticles improves hole mobility of the hole transport layer in comparison to an identical hole transport layer that has not been subjected to an annealing step.
    Type: Application
    Filed: March 29, 2016
    Publication date: February 23, 2017
    Inventors: Timothy S. De Vries, Ashley S. Inman, Kenneth L. Kearns, JR., Chun Liu, Travis E. McIntire, Peter Trefonas, III, William H. H. Woodward
  • Patent number: 9576799
    Abstract: Disclosed herein is a method for doping a substrate, comprising disposing a coating of a composition comprising a copolymer, a dopant precursor and a solvent on a substrate; where the copolymer is capable of phase segregating and embedding the dopant precursor while in solution; and annealing the substrate at a temperature of 750 to 1300° C. for 0.1 second to 24 hours to diffuse the dopant into the substrate. Disclosed herein too is a semiconductor substrate comprising embedded dopant domains of diameter 3 to 30 nanometers; where the domains comprise Group 13 or Group 15 atoms, wherein the embedded spherical domains are located within 30 nanometers of the substrate surface.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: February 21, 2017
    Assignees: DOW GLOBAL TECHNOLOGIES, LLC, ROHM AND HAAS ELECTRONIC MATERIALS LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Rachel A. Segalman, Peter Trefonas, III, Bhooshan C. Popere, Andrew T. Heitsch
  • Publication number: 20170045643
    Abstract: In one aspect, structures are provided that comprise (a) a one-dimensional periodic plurality of layers, wherein at least two of the layers have a refractive index differential sufficient to provide effective contrast; and (b) one or more light-emitting nanostructure materials effectively positioned with respect to the refractive index differential interface, wherein the structure provides a polarized output emission.
    Type: Application
    Filed: March 10, 2016
    Publication date: February 16, 2017
    Inventors: Brian Cunningham, Gloria G. See, Peter Trefonas, III, Jieqian Zhang, Jong Keun Park, Kevin Howard, Kishori Deshpande, Trevor Ewers
  • Publication number: 20170038686
    Abstract: An anthraquinone compound which is suitable for forming a color filter used for a liquid crystal display device, a composition containing a resin and the anthraquinone compound, an article having a polymer layer formed from the composition and a color filter containing the compound are developed.
    Type: Application
    Filed: April 18, 2014
    Publication date: February 9, 2017
    Inventors: Guihong Liao, Yang Li, Peter Trefonas, III, Geun Huh, Hua Ren, Chao He, Yu Cai, Yanping Sun
  • Publication number: 20170037171
    Abstract: A copolymer is prepared by the polymerization of monomers that include an ultraviolet absorbing monomer, and a base-solubility-enhancing monomer. The copolymer is useful for forming a topcoat layer for electron beam and extreme ultraviolet lithographies. Also described are a layered article including the topcoat layer, and an associated method of forming an electronic device.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 9, 2017
    Inventors: James W. Thackeray, Ke Du, Peter Trefonas, III, Idriss Blakey, Andrew Keith Whittaker
  • Publication number: 20170037178
    Abstract: A block copolymer useful in electron beam and extreme ultraviolet photolithography includes a first block with units derived from a base-solubility-enhancing monomer and an out-of-band absorbing monomer, and a second block having a low surface energy. Repeat units derived from the out-of-ban absorbing monomer allow the copolymer to absorb significantly in the wavelength range 150 to 400 nanometers. When incorporated into a photoresist composition with a photoresist random polymer, the block copolymer self-segregates to form a top layer that effectively screens out-of-band radiation.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 9, 2017
    Inventors: James W. Thackeray, Ke Du, Peter Trefonas, III, Idriss Blakey, Andrew Keith Whittaker
  • Publication number: 20170031244
    Abstract: A composite, which is a blend comprising: a nanoparticle comprising a core and a coating surrounding the core; and a polymer, wherein the coating of the nanoparticle comprises a ligand, wherein the ligand is a substituted or unsubstituted C1-C16 carboxylic acid or a salt thereof, a substituted or unsubstituted C1-C16 amino acid or a salt thereof, a substituted or unsubstituted C1-C16 dialkyl phosphonate, or a combination thereof; and wherein the polymer is a polymerization product of a photoacid generator comprising a polymerizable group; at least one unsaturated monomer, which is different from the photoacid generator comprising a polymerizable group; and a chain transfer agent of formula (I); wherein: Z is a y valent C1-20 organic group, x is 0 or 1, and Rd is a substituted or unsubstituted C1-20 alkyl, C3-20 cycloalkyl, C6-20 aryl, or C7-20 aralkyl.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 2, 2017
    Inventors: James W. Thackeray, Meiliana Siauw, Peter Trefonas, III, Idriss Blakey, Andrew Keith Whittaker
  • Patent number: 9540476
    Abstract: Polymeric reaction products of certain aromatic alcohols with certain aromatic aldehydes are useful as underlayers in semiconductor manufacturing processes.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: January 10, 2017
    Assignees: Rohm and Haas Electronic Materials LLC, Rohm and Haas Electronic Materials Korea Ltd.
    Inventors: Li Cui, Sung Wook Cho, Mingqi Li, Shintaro Yamada, Peter Trefonas, III, Robert L. Auger
  • Publication number: 20160365478
    Abstract: In one aspect, methods are provided for fabrication of multiple layers of a nanostructure material composite, and devices produced by such methods. In another aspect, methods are provided that include use of an overcoating fluoro-containing layer that can facilitate transfer of a nanostructure material layer, and devices produced by such methods.
    Type: Application
    Filed: December 19, 2014
    Publication date: December 15, 2016
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, John A. Rogers, Bong Hoon Kim, Sang Y. Yang, Peter Trefonas, III, Kishori Deshpande, Jaebum Joo, Jieqian J. Zhang, Jong Keun Park
  • Patent number: 9508549
    Abstract: Methods of forming an electronic device comprise: (a) providing a semiconductor substrate comprising a porous feature on a surface thereof; (b) applying a composition over the porous feature, wherein the composition comprises a polymer and a solvent, wherein the polymer comprises a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and (c) heating the composition; wherein the polymer is disposed in pores of the porous feature. The methods find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: November 29, 2016
    Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials LLC
    Inventors: Jong Keun Park, Phillip D. Hustad, Emad Aqad, Mingqi Li, Cheng-Bai Xu, Peter Trefonas, III, James W. Thackeray
  • Patent number: 9490117
    Abstract: A method of forming a pattern by directed self-assembly, comprising: (a) providing a semiconductor substrate comprising one or more layers to be patterned; (b) applying a crosslinkable underlayer composition over the one or more layers to be patterned to form a crosslinkable underlayer, wherein the crosslinkable underlayer composition comprises a crosslinkable polymer comprising a first unit formed from a monomer of the following general formula (I-A) or (I-B): wherein: P is a polymerizable functional group; L is a single bond or an m+1-valent linking group; X1 is a monovalent electron donating group; X2 is a divalent electron donating group; Ar1 and Ar2 are trivalent and divalent aryl groups, respectively, and carbon atoms of the cyclobutene ring are bonded to adjacent carbon atoms on the same aromatic ring of Ar1 or Ar2; m and n are each an integer of 1 or more; and each R1 is independently a monovalent group; (c) heating the crosslinkable underlayer to form a crosslinked underlayer; (d) forming a self-
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: November 8, 2016
    Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials LLC
    Inventors: Jong Keun Park, Jibin Sun, Christopher D. Gilmore, Jieqian Zhang, Phillip D. Hustad, Peter Trefonas, III, Kathleen M. O'Connell
  • Patent number: 9447220
    Abstract: Disclosed herein is a graft block copolymer comprising a first block polymer; the first block polymer comprising a backbone polymer and a first graft polymer; where the first graft polymer comprises a surface energy reducing moiety; and a second block polymer; the second block polymer being covalently bonded to the first block; wherein the second block comprises the backbone polymer and a second graft polymer; where the second graft polymer comprises a functional group that is operative to crosslink the graft block copolymer.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: September 20, 2016
    Assignees: ROHM AND HAAS ELECTRONIC MATERIALS LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Sangho Cho, Guorong Sun, Karen L. Wooley, James W. Thackeray, Peter Trefonas, III
  • Patent number: 9440899
    Abstract: A method of separating a secondary alcohol compound from a primary alcohol compound using selective acylation is provided.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: September 13, 2016
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Christopher D. Gilmore, Chi-Wan Lee, Peter Trefonas, III, William Williams, III, Qiuzhe Xie
  • Patent number: 9437431
    Abstract: New methods are provided for manufacturing a semiconductor device. Preferred methods of the invention include depositing a photoresist on a semiconductor substrate surface followed by imaging and development of resist coating layer; applying a curable organic or inorganic composition over the resist relief image; etching to provide a relief image of the resist encased by the curable composition; and removing the resist material whereby the curable organic or inorganic composition remains in a relief image of increased pitch relative to the previously developed resist image.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: September 6, 2016
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter Trefonas, III, Dong Won Chung
  • Publication number: 20160251508
    Abstract: Disclosed herein is a composition comprising a block copolymer; where the block copolymer comprises a first polymer and a second polymer; where the first polymer and the second polymer of the block copolymer are different from each other and the block copolymer forms a phase separated structure; an additive polymer; where the additive polymer comprises a bottle brush polymer; where the bottle brush polymer comprises a homopolymer that is the chemically and structurally the same as one of the polymers in the block copolymer or where the additive polymer comprises a graft copolymer that has a preferential interaction with one of the blocks of the block copolymers; and a solvent.
    Type: Application
    Filed: February 25, 2016
    Publication date: September 1, 2016
    Inventors: Phillip D. Hustad, Peter Trefonas, III, Valeriy V. Ginzburg, Bongkeun Kim, Glenn H. Fredrickson
  • Publication number: 20160251539
    Abstract: Disclosed herein is a pattern forming method comprising disposing upon a substrate a composition comprising a block copolymer; where the block copolymer comprises a first polymer and a second polymer; where the first polymer and the second polymer of the block copolymer are different from each other and the block copolymer forms a phase separated structure; an additive polymer; where the additive polymer comprises a bottlebrush polymer; and where the bottlebrush polymer comprises a polymer that has a lower or a higher surface energy than the block copolymer; and a solvent; and annealing the composition to facilitate domain separation between the first polymer and the second polymer of the block copolymer to form a morphology of periodic domains formed from the first polymer and the second polymer; where a longitudinal axis of the periodic domains are parallel to the substrate.
    Type: Application
    Filed: February 25, 2016
    Publication date: September 1, 2016
    Inventors: Phillip D. Hustad, Peter Trefonas, III, Valeriy V. Ginzburg, Bongkeun Kim, Glenn H. Fredrickson
  • Publication number: 20160254141
    Abstract: Disclosed herein is a pattern forming method comprising providing a substrate devoid of a layer of a brush polymer; disposing upon the substrate a composition comprising a block copolymer comprising a first polymer and a second polymer; where the first polymer and the second polymer of the block copolymer are different from each other; and an additive polymer where the additive polymer comprises a bottlebrush polymer; where the bottlebrush polymer comprises a polymeric chain backbone and a grafted polymer that are bonded to each other; and where the bottlebrush polymer comprises a polymer that is chemically and structurally the same as one of the polymers in the block copolymer or where the bottlebrush polymer comprises a polymer that has a preferential interaction with one of the blocks of the block copolymers; and a solvent; and annealing the composition to facilitate domain separation between the first polymer and the second polymer.
    Type: Application
    Filed: February 25, 2016
    Publication date: September 1, 2016
    Inventors: Phillip D. Hustad, Peter Trefonas, III, Valeriy V. Ginzburg, Bongkeun Kim, Glenn H. Fredrickson
  • Publication number: 20160251538
    Abstract: Disclosed herein is a composition comprising a block copolymer; where the block copolymer comprises a first polymer and a second polymer; where the first polymer and the second polymer of the block copolymer are different from each other and the block copolymer forms a phase separated structure; an additive polymer; where the additive polymer comprises a bottlebrush polymer; and where the bottlebrush polymer comprises a polymer that is chemically and structurally the same as one of the polymers in the block copolymer or where the bottlebrush polymer comprises a polymer that has a preferential interaction with one of the blocks of the block copolymers; and a solvent.
    Type: Application
    Filed: February 25, 2016
    Publication date: September 1, 2016
    Inventors: Phillip D. Hustad, Peter Trefonas, III, Valeriy V. Ginzburg, Bongkeun Kim, Glenn H. Fredrickson