Patents by Inventor Peter Van Wyck Loomis

Peter Van Wyck Loomis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867510
    Abstract: A navigation system useful for providing speed and heading and other navigational data to a drive system of a moving body, e.g., a vehicle body or a mobile robot, to navigate through a space. The navigation system integrates an inertial navigation system, e.g., a unit or system based on an inertial measurement unit (IMU). with a vision-based navigation system unit or system such that the inertial navigation system can provide real time navigation data and the vision-based navigation can provide periodic, but more accurate, navigation data that is used to correct the inertial navigation system's output. The navigation system was designed with the goal in mind of providing low effort integration of inertial and video data. The methods and devices used in the new navigation system address problems associated with high accuracy dead reckoning systems (such as a typical vision-based navigation system) and enhance performance with low cost IMUs.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: January 9, 2024
    Assignee: Trimble Inc.
    Inventors: Gregory C. Best, Peter Van Wyck Loomis
  • Patent number: 11105637
    Abstract: Dead reckoning combined with GNSS-aided map-matching improves accuracy and reliability of vehicle navigation. A map-match navigation module in a handheld device sends map-match feedback messages to a vehicle state estimator via a port. The module also accepts vehicle speed and inertial navigation data from sensors mounted in the vehicle.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 31, 2021
    Assignee: Trimble Inc.
    Inventor: Peter Van Wyck Loomis
  • Publication number: 20210033401
    Abstract: A navigation system useful for providing speed and heading and other navigational data to a drive system of a moving body, e.g., a vehicle body or a mobile robot, to navigate through a space. The navigation system integrates an inertial navigation system, e.g., a unit or system based on an inertial measurement unit (IMU). with a vision-based navigation system unit or system such that the inertial navigation system can provide real time navigation data and the vision-based navigation can provide periodic, but more accurate, navigation data that is used to correct the inertial navigation system's output. The navigation system was designed with the goal in mind of providing low effort integration of inertial and video data. The methods and devices used in the new navigation system address problems associated with high accuracy dead reckoning systems (such as a typical vision-based navigation system) and enhance performance with low cost IMUs.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: Gregory C. Best, Peter Van Wyck Loomis
  • Patent number: 10845198
    Abstract: A navigation system useful for providing speed and heading and other navigational data to a drive system of a moving body, e.g., a vehicle body or a mobile robot, to navigate through a space. The navigation system integrates an inertial navigation system, e.g., a unit or system based on an inertial measurement unit (IMU). with a vision-based navigation system unit or system such that the inertial navigation system can provide real time navigation data and the vision-based navigation can provide periodic, but more accurate, navigation data that is used to correct the inertial navigation system's output. The navigation system was designed with the goal in mind of providing low effort integration of inertial and video data. The methods and devices used in the new navigation system address problems associated with high accuracy dead reckoning systems (such as a typical vision-based navigation system) and enhance performance with low cost IMUs.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: November 24, 2020
    Assignee: Trimble Inc.
    Inventors: Gregory C. Best, Peter Van Wyck Loomis
  • Patent number: 10564297
    Abstract: Elevation data obtained from a terrain database is a measurement in an inertial navigation system for land vehicles.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: February 18, 2020
    Assignee: Trimble Inc.
    Inventor: Peter Van Wyck Loomis
  • Publication number: 20190265049
    Abstract: Dead reckoning combined with GNSS-aided map-matching improves accuracy and reliability of vehicle navigation. A map-match navigation module in a handheld device sends map-match feedback messages to a vehicle state estimator via a port. The module also accepts vehicle speed and inertial navigation data from sensors mounted in the vehicle.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Inventor: Peter Van Wyck Loomis
  • Patent number: 10101465
    Abstract: A radio frequency component receives and digitizes a first plurality of L1 Global Navigation Satellite System (GNSS) signals and a second plurality of L2C GNSS signals from a plurality of GNSS satellites. A software defined GNSS receiver operating on a processor of a cellular telephone separate from the radio frequency component derives carrier phase measurements from the first plurality of L1 GNSS signals and the second plurality of L2C GNSS signals during an epoch. A wireless message from a communication device located at a base location is received conveying pseudorange and carrier measurements derived from the first plurality of L1 GNSS signals from said plurality of GNSS satellites during the epoch. The cellular telephone determines a distance from the base location to said first location.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: October 16, 2018
    Assignee: Trimble Inc.
    Inventors: Peter Van Wyck Loomis, Gregory Craig Wallace, Shawn D. Weisenburger, Nicholas C. Talbot, James M. Janky
  • Publication number: 20180266828
    Abstract: A navigation system useful for providing speed and heading and other navigational data to a drive system of a moving body, e.g., a vehicle body or a mobile robot, to navigate through a space. The navigation system integrates an inertial navigation system, e.g., a unit or system based on an inertial measurement unit (IMU). with a vision-based navigation system unit or system such that the inertial navigation system can provide real time navigation data and the vision-based navigation can provide periodic, but more accurate, navigation data that is used to correct the inertial navigation system's output. The navigation system was designed with the goal in mind of providing low effort integration of inertial and video data. The methods and devices used in the new navigation system address problems associated with high accuracy dead reckoning systems (such as a typical vision-based navigation system) and enhance performance with low cost IMUs.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 20, 2018
    Inventors: GREGORY C. BEST, PETER VAN WYCK LOOMIS
  • Patent number: 9945959
    Abstract: A stand-alone radio frequency (RF) hardware component comprises first and second antennas, a digitizer, a serializer, and a serial output. The first antenna receives, over-the-air, a first analog Global Navigation Satellite System (GNSS) signal in a first frequency band. The second antenna receives, over-the-air, at least a second analog GNSS signal in a second frequency band, wherein the first frequency band and the second frequency band are separate and distinct. The digitizer digitizes the first analog GNSS signal into a first digitalized GNSS signal and digitizes the second analog GNSS signal into a second digitized GNSS signal. The serializer serializes the digitized GNSS signals into a serialized output signal. A wireless transmitter for wirelessly transmitting the digitized GNSS signals, as the serialized output signal, from the radio frequency hardware component to a separate communication device.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 17, 2018
    Assignee: Trimble Inc.
    Inventors: Gregory Craig Wallace, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Publication number: 20180080775
    Abstract: Dead reckoning combined with GNSS-aided map-matching improves accuracy and reliability of vehicle navigation. A map-match navigation module in a handheld device sends map-match feedback messages to a vehicle state estimator via a port. The module also accepts vehicle speed and inertial navigation data from sensors mounted in the vehicle.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventor: Peter Van Wyck Loomis
  • Patent number: 9923626
    Abstract: A method for capturing ionospheric data is disclosed. In accordance with one embodiment, a plurality of phase-coherent signals transmitted by at least one Global Navigation Satellite System (GNSS) satellite is received via a mobile multi-frequency GNSS receiver. Respective code phase data and carrier phase data for each of said plurality of phase-coherent signals are derived using a software defined GNSS receiver operating on a processor of a first communication device of the multi-frequency GNSS receiver. Respective code phase data and carrier phase data for each of the plurality of phase-coherent signals is stored in a data storage device. The respective code phase data and carrier phase data is appended with a respective time-stamp and position fix. An ionospheric sample based upon respective code phase data and carrier phase data of said plurality of phase-coherent signals is wirelessly transmitted to a second location.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: March 20, 2018
    Assignee: Trimble Inc.
    Inventors: Peter Van Wyck Loomis, Gregory Craig Wallace, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9910158
    Abstract: A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw observables that include raw pseudoranges and carrier phase information. The raw observables are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. Smoothed pseudoranges are provided by smoothing the raw pseudoranges based on the carrier phase information. The accessing, the extracting and the providing are performed by one or more hardware processors located in the cellular device and outside of the GNSS chipset.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: March 6, 2018
    Assignee: Trimble Inc.
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9903957
    Abstract: A stand-alone radio frequency hardware component includes a first antenna configured for receiving, over-the-air, a first analog Global Navigation Satellite System (GNSS) signal in a first frequency band. A second antenna configured for receiving, over-the-air, at least a second analog GNSS signal in a second frequency band, wherein the first frequency band and the second frequency band are separate and distinct. A digitizer configured for digitizing the first analog GNSS signal into a first digitalized GNSS signal and for digitizing the second analog GNSS signal into a second digitized GNSS signal. A memory for storing the digitized GNSS signals, wherein the digitized GNSS signals are accessed from the memory by a separate communication device.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: February 27, 2018
    Assignee: Trimble Inc.
    Inventors: Gregory Craig Wallace, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9880286
    Abstract: A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw pseudoranges. The raw pseudoranges are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. A position fix is determined based on the raw pseudoranges. Locally measured cellular device movement information is obtained from at least one sensor that is in a known physical relationship with the cellular device. The locally measured cellular device movement information is applied to the position fix.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: January 30, 2018
    Assignee: Trimble Inc.
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9835729
    Abstract: A stand-alone radio frequency (RF) hardware component comprises first and second antennas, a digitizer, a serializer, and a serial output. The first antenna receives, over-the-air, a first analog Global Navigation Satellite System (GNSS) signal in a first frequency band. The second antenna receives, over-the-air, at least a second analog GNSS signal in a second frequency band, wherein the first frequency band and the second frequency band are separate and distinct. The digitizer digitizes the first analog GNSS signal into a first digitalized GNSS signal and digitizes the second analog GNSS signal into a second digitized GNSS signal. The serializer serializes the digitized GNSS signals into a serialized output signal. The serial output communicatively couples the digitized GNSS signals, as the serialized output signal, directly from the RF hardware component to a communication device that is removably couplable with the stand-alone RF hardware component.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: December 5, 2017
    Assignee: Trimble Inc.
    Inventors: Gregory Craig Wallace, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9778368
    Abstract: A multiband antenna apparatus for high-precision GNSS positioning is proposed. The multiband antenna apparatus comprises a first antenna configured for reception of GNSS signals in a first multiband of electromagnetic spectrum, a second multiband antenna configured for reception of GNSS signals in a second multiband of electromagnetic spectrum, and an antenna phase reference point configured to represent an integrated electric phase data. The antenna phase reference point is related to a physical reference point of the antenna apparatus.
    Type: Grant
    Filed: September 7, 2014
    Date of Patent: October 3, 2017
    Assignee: Trimble Inc.
    Inventors: Eric Charles Krantz, Peter Van Wyck Loomis, Gregory Craig Wallace, Nicholas Charles Talbot
  • Patent number: 9743373
    Abstract: A first process and a second process are executed concurrently by one or more hardware processors located in the cellular device and outside of a Global Navigation Satellite System (GNSS) chipset embedded in the cellular device. The first process determines a first set of one or more position fixes based on extracted raw pseudorange information. The second process determines carrier phase smoothed pseudoranges based on carrier phase information and determines a second set of one or more position fixes based on the carrier phase smoothed pseudoranges. One or more of the first set of position fixes are provided to a user while a predetermined amount of carrier phase information is not available for performing carrier phase smoothing. One or more of the second set of position fixes are provided to the user while a predetermined amount of carrier phase information is available for performing carrier phase smoothing.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: August 22, 2017
    Assignee: Trimble Inc.
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9683849
    Abstract: Adaptive gyroscope bias compensation allows a vehicle navigation module to estimate position and velocity reliably during temperature changes.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: June 20, 2017
    Assignee: Trimble Inc.
    Inventors: Xiaorong Zhi, Takayuki Hoshizaki, Peter Van Wyck Loomis, Walter Kenneth Stockwell
  • Patent number: 9645248
    Abstract: A vehicle-based radio frequency (RF) hardware component comprises first and second antennas, a digitizer, a serializer, and a serial output. The first antenna receives, over-the-air, a first analog Global Navigation Satellite System (GNSS) signal in a first frequency band. The second antenna receives, over-the-air, at least a second analog GNSS signal in a second frequency band, wherein the first frequency band and the second frequency band are separate and distinct. The digitizer digitizes the first analog GNSS signal into a first digitalized GNSS signal and digitizes the second analog GNSS signal into a second digitized GNSS signal. The serializer serializes the digitized GNSS signals into a serialized output signal. The serial output communicatively couples the digitized GNSS signals, as the serialized output signal, directly from a location in a vehicle of the radio frequency hardware component to a separate communication device that is also coupled with the vehicle.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: May 9, 2017
    Assignee: Trimble Inc.
    Inventors: Gregory Craig Wallace, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Patent number: 9639941
    Abstract: A plurality of images are captured by an image capturing device that is an integral part of the mobile data collection platform from at least two different perspectives that depict a point of interest in a scene. Coincident with capture of each of the plurality of images, orientation information is obtained via orientation sensors of the mobile data collection platform, a position fix of an antenna associated with the mobile data collection platform is determined, and a position of an entrance pupil of the image capturing device is calculated. Scale information associated with at least one of the images is captured. Scene data comprises the images, the orientation information and the entrance pupil positions. A three dimensional position of the point of interest at the scene is determined based on photogrammetric image processing of the scene data.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: May 2, 2017
    Assignee: Trimble Inc.
    Inventors: Richard Rudow, Chad McFadden, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky, Michael V. McCusker