Patents by Inventor Peter W. Faguy

Peter W. Faguy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7135205
    Abstract: To form an ionomer-based catalytic layer on a porous substrate, a heat source (40) is used to dry an ionomer-containing spray (46) so that it does not substantially liquid flow on the substrate (14). The ionomer spray (46) may contain a catalyst. A spray (46) of mixed material for forming the catalytic layer is entrained by a gas stream and is heated and directed to a substrate surface (12). For hydrogen/oxygen fuel cells, catalytic material is incorporated into the proton-conducting membrane (56) to convert diffusing oxygen and hydrogen to water to reduce potential loss at the electrodes and maintain hydration of the proton-conducting membrane (56).
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: November 14, 2006
    Assignee: nGimat, Co.
    Inventors: Paul L. Smith, Peter W. Faguy, Andrew T. Hunt, Charles McKendrie Quillian, V, William John Dalzell, Jr., Frank C. Witbrod, Stein S. Lee, William Harm, Joanne Yardlyne Smalley, Mark Batich, William Hoos
  • Patent number: 7031136
    Abstract: Tunable capacitors (10, 20, 30, 40) have a dielectric material (16, 26, 36, 42) between electrodes, which dielectric material comprises an insulating material (17, 27, 37, 42) and electrically conductive material, (18, 28, 38, 48) e.g., conductive nanoparticulates, dispersed therein. In certain cases, enhanced tune-ability is achieved when the dielectric material comprises elongated nanoparticulates (38). Further enhanced tune-ability may be achieved by aligning elongated particulates in an electrode-to-electrode direction. Nanoparticulates may be produced by heating passivated nanoparticulates. Passivated nanoparticulates may be covalently bound within a polymeric matrix. High bias potential device structures can be formed with preferential mobilities.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 18, 2006
    Assignee: nGimat Co.
    Inventors: Andrew Tye Hunt, Miodrag Oljaca, Scott Flanagan, Girish Deshpande, Stein Lee, Peter W. Faguy
  • Publication number: 20040169992
    Abstract: Tunable capacitors (10, 20, 30, 40) have a dielectric material (16, 26, 36, 42) between electrodes, which dielectric material comprises an insulating material (17, 27, 37, 42) and electrically conductive material, (18, 28, 38, 48) e.g., conductive nanoparticulates, dispersed therein. In certain cases, enhanced tune-ability is achieved when the dielectric material comprises elongated nanoparticulates (38). Further enhanced tune-ability may be achieved by aligning elongated particulates in an electrode-to-electrode direction. Nanoparticulates may be produced by heating passivated nanoparticulates. Passivated nanoparticulates may be covalently bound within a polymeric matrix. High bias potential device structures can be formed with preferential mobilities.
    Type: Application
    Filed: October 9, 2003
    Publication date: September 2, 2004
    Inventors: Andrew Tye Hunt, Miodrag Oljaca, Scott Flanagan, Girish Deshpande, Stein Lee, Peter W. Faguy