Patents by Inventor Philip Eggers

Philip Eggers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060030912
    Abstract: Method, system and apparatus for monitoring target tissue temperatures wherein temperature sensors are configured as passive resonant circuits each with a unique resonating signature at monitoring temperatures extending below a select temperature setpoint. The resonant circuits are configured with an inductor component formed of windings about a ferrite core having a Curie temperature characteristic corresponding with a desired temperature setpoint. By selecting inductor winding turns and capacitance values, unique resonant center frequencies are detectable. Temperature monitoring can be carried out with implants at lower threshold and upper limit temperature responses. Additionally, the lower threshold sensors may be combined with auto-regulated heater implants having Curie transitions at upper temperature limits.
    Type: Application
    Filed: September 30, 2005
    Publication date: February 9, 2006
    Inventors: Philip Eggers, John Ridihalgh, Mark Mayerchak, Gary Altman
  • Publication number: 20060030914
    Abstract: Method, system and apparatus for monitoring target tissue temperatures wherein temperature sensors are configured as passive resonant circuits each with a unique resonating signature at monitoring temperatures extending below a select temperature setpoint. The resonant circuits are configured with an inductor component formed of windings about a ferrite core having a Curie temperature characteristic corresponding with a desired temperature setpoint. By selecting inductor winding turns and capacitance values, unique resonant center frequencies are detectable. Temperature monitoring can be carried out with implants at lower threshold and upper limit temperature responses. Additionally, the lower threshold sensors may be combined with auto-regulated heater implants having Curie transitions at upper temperature limits.
    Type: Application
    Filed: September 30, 2005
    Publication date: February 9, 2006
    Inventors: Philip Eggers, John Ridihalgh, Mark Mayerchak, Gary Altman
  • Publication number: 20060020313
    Abstract: Method, system and apparatus for monitoring target tissue temperatures wherein temperature sensors are configured as passive resonant circuits each with a unique resonating signature at monitoring temperatures extending below a select temperature setpoint. The resonant circuits are configured with an inductor component formed of windings about a ferrite core having a Curie temperature characteristic corresponding with a desired temperature setpoint. By selecting inductor winding turns and capacitance values, unique resonant center frequencies are detectable. Temperature monitoring can be carried out with implants at lower threshold and upper limit temperature responses. Additionally, the lower threshold sensors may be combined with auto-regulated heater implants having Curie transitions at upper temperature limits.
    Type: Application
    Filed: September 30, 2005
    Publication date: January 26, 2006
    Inventors: Philip Eggers, John Ridihalgh, Mark Mayerchak, Gary Altman
  • Publication number: 20060020312
    Abstract: Method, system and apparatus for monitoring target tissue temperatures wherein temperature sensors are configured as passive resonant circuits each with a unique resonating signature at monitoring temperatures extending below a select temperature setpoint. The resonant circuits are configured with an inductor component formed of windings about a ferrite core having a Curie temperature characteristic corresponding with a desired temperature setpoint. By selecting inductor winding turns and capacitance values, unique resonant center frequencies are detectable. Temperature monitoring can be carried out with implants at lower threshold and upper limit temperature responses. Additionally, the lower threshold sensors may be combined with auto-regulated heater implants having Curie transitions at upper temperature limits.
    Type: Application
    Filed: September 30, 2005
    Publication date: January 26, 2006
    Inventors: Philip Eggers, John Ridihalgh, Mark Mayerchak, Gary Altman
  • Publication number: 20050267455
    Abstract: Method for carrying out the recovery of an intact volume of tissue wherein a delivery cannula tip is positioned in confronting adjacency with the volume of tissue to be recovered. The electrosurgical generator employed to form an arc at a capture component extending from the tip is configured having a resistance-power profile which permits recovery of the specimen without excessive thermal artifact while providing sufficient power to sustain a cutting arc. For the recovery procedure, a local anesthetic employing a diluent which exhibits a higher resistivity is utilized and the method for deploying the capture component involves an intermittent formation of a cutting arc with capture component actuation interspersed with pauses of duration effective to evacuate any accumulation or pockets of local anesthetic solution encountered by the cutting electrodes.
    Type: Application
    Filed: August 1, 2005
    Publication date: December 1, 2005
    Inventors: Philip Eggers, Michael Jopling
  • Publication number: 20050234532
    Abstract: System method and apparatus for accurately carrying out the in situ heating of a targeted tissue. Small implants are employed with the targeted tissue which exhibit an abrupt change of magnetic permeability at an elected Curie temperature. The permeability state of the implant is monitored utilizing a magnetometer. The implants may be formed as a setpoint temperature determining component combined with a non-magnetic heater component to enhance the tissue heating control of the system. With the system, a very accurate quantum of heat energy can be supplied to a neoplastic lesion or tissue carrying infectious disease so as to maximize the induction of heat shock proteins. The system also may be utilized in conjunction with non-magnetic arterially implanted stents for the hyperthermia therapy treatment of restenosis and in conjunction with the mending of boney tissue.
    Type: Application
    Filed: March 24, 2005
    Publication date: October 20, 2005
    Inventors: Philip Eggers, John Ridihalgh
  • Publication number: 20050187543
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within a patient's body, particularly including tissue in the spine. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals in the presence of electrically conductive fluid to contract collagen fibers within the tissue structures. In one aspect of the invention, a system and method is provided for treating herniated or swollen discs within a patient's spine by applying sufficient electrical energy to the disc tissue to contract or shrink the collagen fibers within the nucleus pulposis. This causes the pulposis to shrink and withdraw from its impingement on the spinal nerve.
    Type: Application
    Filed: April 25, 2005
    Publication date: August 25, 2005
    Applicant: ArthroCare Corporation
    Inventors: Ronald Underwood, Terry Davison, Hira Thapliyal, Philip Eggers
  • Publication number: 20050171529
    Abstract: Method, system and apparatus for carrying out accurate electrosurgical cutting. A thin resilient electrode is utilized at the forward end region of an instrument which is deployable from a longitudinally disposed slot positioned rearwardly of the tip of the instrument. Lateral sides of the slot extend between a forward location adjacent the tip and a rearward location. The electrode is deployed by urging it forwardly in compression to form an arch profile supported by the abutting slot sides adjacent the forward and rearward locations. Electrosurgically excitable with a cutting output, the electrode may carry out a cutting action both during its deployment and retraction into the noted slot. This permits a pivoting maneuver effective for circumscribing a volume of targeted tissue.
    Type: Application
    Filed: February 17, 2005
    Publication date: August 4, 2005
    Inventors: Philip Eggers, Eric Eggers, Andrew Eggers
  • Publication number: 20050124915
    Abstract: Electrosurgical tissue specimen recovery apparatus and system employing a multi-leaf capture component configured with pursing cables which are electrosurgically excited to define a cutting leading edge. To complete a capture, the cables are loaded in tension to purse and thus converge the tips of the capture component leafs together. The forward regions of the leafs are configured with a combination of a thin flat stainless steel region over which a polymeric cable guide is positioned. The polymeric cable guide and stainless steel leaf driving combination improves frictional aspects as well as the resulting aspect ratio of a recovered tissue specimen.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 9, 2005
    Inventors: Philip Eggers, Andrew Eggers, Eric Eggers
  • Publication number: 20050125046
    Abstract: System method and apparatus for accurately carrying out the in situ heating of a targeted tissue. Small implants are employed with the targeted tissue which exhibit an abrupt change of magnetic permeability at an elected Curie temperature. The permeability state of the implant is monitored utilizing a magnetometer. The implants may be formed as a setpoint temperature determining component combined with a non-magnetic heater component to enhance the tissue heating control of the system. With the system, a very accurate quantum of heat energy can be supplied to a neoplastic lesion or tissue carrying infectious disease so as to maximize the induction of heat shock proteins. The system also may be utilized in conjunction with non-magnetic arterially implanted stents for the hyperthermia therapy treatment of restenosis and in conjunction with the mending of boney tissue.
    Type: Application
    Filed: January 14, 2005
    Publication date: June 9, 2005
    Inventors: Philip Eggers, John Ridihalgh
  • Publication number: 20050033286
    Abstract: The capture component of tissue retrieval apparatus is strengthened to improve its structural integrity when utilized within very dense tissue. Eyelet structures carrying pursing cable are improved through the utilization of slightly expanded constant widths with diminished lengths to avoid fold back phenomena. The pursing cables employed with the capture component exhibit more than a 100% improvement in tensile strength at high electrosurgical cutting temperatures through the utilization of strands having about a 1.4 mil diameter formed with a type 316 stainless steel.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 10, 2005
    Inventors: Philip Eggers, Andrew Eggers, Eric Eggers, David Jacobs
  • Publication number: 20050027209
    Abstract: Samples are recoverable from very dense tissue utilizing an instrument incorporating a capture component formed with leafs extending to leaf tip regions supporting a stainless steel pursing cable assembly. The cables of this assembly are electrosurgically excited to define a confronting leading edge and extend rearwardly to a terminator component. Motor drive is imparted to the capture component to deploy the leafs at a substantially constant initial angle of attack. During this procedure the terminator component is drawn forwardly by the cable until encountering a cable stop whereupon continued motor operation loads the cables in tension. By applying a preliminary loading tension to the cables before encountering the pursing cable stop, the angle of attack of the leaf tip region is gradually altered to lessen the development of lateral tissue induced forces against the leaf structures.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 3, 2005
    Inventor: Philip Eggers
  • Publication number: 20050004634
    Abstract: Systems, apparatus, and methods for treating spinal tissue and other body structures in open and endoscopic spine surgery to relieve symptoms, such as neck or back pain. In particular, the present invention provides methods for the controlled heating of various tissues in or around the vertebral column, including various interspinous tissues, such that spinal ligaments and cartilage surrounding the vertebrae and the facet joints are shrunk or tightened to stabilize the vertebral column of a patient. Thermal energy is applied to the target tissue in a subablation mode of an electrosurgical system to cause shrinkage of the tissue, thereby stiffening the interspinous tissue and stabilizing the vertebral column. In an exemplary embodiment, a high frequency RF voltage can be applied between one or more active electrode(s) and one or more return electrode(s) to heat a target interspinous tissue to within a temperature range at which irreversible shrinkage of the tissue occurs.
    Type: Application
    Filed: July 29, 2004
    Publication date: January 6, 2005
    Applicant: ArthroCare Corporation
    Inventors: Olivier Ricart, Jean Woloszko, David Hovda, Hira Thapliyal, Philip Eggers
  • Publication number: 20030171743
    Abstract: Systems, apparatus, and methods are provided for promoting blood flow to a target tissue. In one aspect, the invention involves canalizing or boring channels, divots, trenches or holes through an avascular connective tissue, or through a tissue having sparse vascularity, such as a tendon or a meniscus, in order to increase blood flow within the tissue. In one method, an active electrode is positioned in close proximity to a target site on a tendon, and a high frequency voltage difference is applied between the active electrode and a return electrode to selectively ablate tendon tissue at the target site, thereby forming a channel or void in the tendon. The active electrode(s) may be moved relative to the tendon during, or after, the application of electrical energy to damage or sculpt a void within the tendon, such as a hole, channel, crater, or the like.
    Type: Application
    Filed: February 21, 2003
    Publication date: September 11, 2003
    Applicant: ArthroCare Corporation
    Inventors: James P. Tasto, Jean Woloszko, Philip Eggers, Hira V. Thapliyal
  • Patent number: 6406475
    Abstract: A pivoting device the two electrically conductive arms (12, 14) of which are connected pivotably by a screwed joint (16) having a screw (46) and a nut (74). Surfaces (26, 28) of the arms (12, 14) which rest against one another, and also the pivoting device (16), are electrically insulated. The nut (74) has, at least in part, a noncircular, preferably elliptical, smooth circumferential surface (80). Holes (36, 38) in the two arms (12, 14) for accommodating the screwed joint (16) are designed in such a way that, in the assembled state, the screw (46) and the nut (74) are arranged in a recessed manner in the holes (36, 38). Electrically insulating material is provided at least in the region of the surface of the screw (46) and the nut (74) and/or the inner walls of both holes (36, 38) in the scissor arms (12, 14).
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: June 18, 2002
    Assignee: Ethicon, Inc.
    Inventors: Peter Wenzler, Philip Eggers, Andrew Eggers
  • Patent number: 6322561
    Abstract: A bipolar electrosurgical instrument having an improved pivot screw design is disclosed. The bipolar electrosurgical instrument has a first half which has a first pivot surface and a first bore. The first bore has a first stepped portion and an elongated portion proximate to the first pivot surface. A second half has a second pivot surface and a second bore having a second stepped portion. An insulating material is disposed on the first pivot surface and the elongated portion of the first bore. A first insert having a third bore in which the third bore has first threads is disposed in the second bore and prevented from entering the first bore by the second stepped portion. A second insert having a fourth bore is disposed in the second bore between the second stepped portion and the first insert and prevented from entering the first bore by the second stepped portion.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: November 27, 2001
    Assignee: Ethicon, Inc.
    Inventors: Philip Eggers, Andrew Eggers, Peter Wenzler
  • Patent number: 6053914
    Abstract: A bipolar electrosurgical instrument having an improved pivot screw design is disclosed. The bipolar electrosurgical instrument has a first half which has a first pivot surface and a first bore. The first bore has a first stepped portion and an elongated portion proximate to the first pivot surface. A second half has a second pivot surface and a second bore having a second stepped portion. An insulating material is disposed on the first pivot surface and the elongated portion of the first bore. A first insert having a third bore in which the third bore has first threads is disposed in the second bore and prevented from entering the first bore by the second stepped portion. A second insert having a fourth bore is disposed in the second bore between the second stepped portion and the first insert and prevented from entering the first bore by the second stepped portion.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: April 25, 2000
    Assignee: Ethicon, Inc.
    Inventors: Philip Eggers, Andrew Eggers, Peter Wenzler