Patents by Inventor Philip J. Maziasz

Philip J. Maziasz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11220729
    Abstract: The present disclosure concerns embodiments of aluminum alloy compositions exhibiting microstructural stability and strength at high temperatures. The disclosed aluminum alloy compositions comprise particular combinations of components that contribute the ability of the compositions to exhibit improved microstructural stability and hot tearing resistance as compared to conventional alloys. Also disclosed herein are embodiments of methods of making and using the alloys.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: January 11, 2022
    Assignees: UT-Battelle, LLC, FCA US LLC, NEMAK USA, Inc.
    Inventors: Amit Shyam, Yukinori Yamamoto, Dongwon Shin, Shibayan Roy, James A. Haynes, Philip J. Maziasz, Adrian Sabau, Andres F. Rodriguez-Jasso, Jose A. Gonzalez-Villarreal, Jose Talamantes-Silva, Lin Zhang, Christopher R. Glaspie, Seyed Mirmiran
  • Patent number: 11193190
    Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.6% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change<+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: December 7, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Philip J Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
  • Publication number: 20190330723
    Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.6% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change<+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Philip J. Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
  • Publication number: 20190226065
    Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.5% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change <+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 25, 2019
    Inventors: Philip J. Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
  • Publication number: 20170335437
    Abstract: The present disclosure concerns embodiments of aluminum alloy compositions exhibiting microstructural stability and strength at high temperatures. The disclosed aluminum alloy compositions comprise particular combinations of components that contribute the ability of the compositions to exhibit improved microstructural stability and hot tearing resistance as compared to conventional alloys. Also disclosed herein are embodiments of methods of making and using the alloys.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 23, 2017
    Inventors: Amit Shyam, Yukinori Yamamoto, Dongwon Shin, Shibayan Roy, James A. Haynes, Philip J. Maziasz, Adrian Sabau, Andres F. Rodriguez-Jasso, Jose A. Gonzalez-Villarreal, Jose Talamantes-Silva, Lin Zhang, Christopher R. Glaspie, Seyed Mirmiran
  • Patent number: 8318083
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M23C6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 27, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Roman I Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Patent number: 8003045
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M(C, N).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 23, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Publication number: 20100303669
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Application
    Filed: July 20, 2010
    Publication date: December 2, 2010
    Applicant: Ut-Battelle, LLC
    Inventors: Roman I. Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Patent number: 7829194
    Abstract: A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: November 9, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Michael P. Brady, Bing Yang, Philip J. Maziasz
  • Publication number: 20100247370
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M (C, N).
    Type: Application
    Filed: June 4, 2010
    Publication date: September 30, 2010
    Applicant: OAK RIDGE NATIONAL LABORATORY
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Patent number: 7754305
    Abstract: An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 13, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Yukinori Yamamoto, Michael L Santella, Michael P Brady, Philip J Maziasz, Chain-tsuan Liu
  • Patent number: 7749432
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M(C, N).
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 6, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Patent number: 7744813
    Abstract: An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800° C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: June 29, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Michael P. Brady, Bruce A. Pint, Chain-Tsuan Liu, Philip J. Maziasz, Yukinori Yamamoto, Zhao P. Lu
  • Patent number: 7520942
    Abstract: A method of making a steel composition includes the steps of: a. providing a steel composition that includes up to 15% Cr, up to 3% Mo, up to 4% W, 0.05-1% V, up to 2% Si, up to 3% Mn, up to 10% Co, up to 3% Cu, up to 5% Ni, up to 0.3% C, 0.02-0.3% N, balance iron, wherein the percentages are by total weight of the composition; b. austenitizing the composition at a temperature in the range of 1000° C. to 1400° C.; c. cooling the composition of steel to a selected hot-working temperature in the range 500° C. to 1000° C.; d. hot-working the composition at the selected hot-working temperature; e. annealing the composition for a time period of up to 10 hours at a temperature in the range of 500° C. to 1000° C.; and f. cooling the composition to ambient temperature to transform the steel composition to martensite, bainite, ferrite, or a combination of those microstructures.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: April 21, 2009
    Assignee: UT-Battelle, LLC
    Inventors: Ronald L. Klueh, Naoyuki Hashimoto, Philip J. Maziasz
  • Publication number: 20090053100
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Application
    Filed: December 7, 2006
    Publication date: February 26, 2009
    Inventors: Roman I. Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Publication number: 20080292489
    Abstract: An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 27, 2008
    Applicant: UT-BATTELLE, LLC
    Inventors: Yukinori Yamamoto, Michael L. Santella, Michael P. Brady, Philip J. Maziasz, Chain-Tsuan Liu
  • Publication number: 20080163957
    Abstract: An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800° C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 10, 2008
    Applicant: UT-Battelle, LLC
    Inventors: Michael P. Brady, Bruce A. Pint, Chain-Tsuan Liu, Philip J. Maziasz, Yukinori Yamamoto, Zhao P. Lu
  • Patent number: 7258752
    Abstract: A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above 550° C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 1010 to 1017 precipitates per cm3.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: August 21, 2007
    Assignee: UT-Battelle LLC
    Inventors: Philip J. Maziasz, Robert W. Swindeman, Bruce A. Pint, Michael L. Santella, Karren L. More
  • Patent number: RE41100
    Abstract: A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: February 9, 2010
    Assignee: Caterpillar Inc.
    Inventors: Philip J. Maziasz, Tim McGreevy, Michael James Pollard, Chad W. Siebenaler, Robert W. Swindeman
  • Patent number: RE41504
    Abstract: A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 17, 2010
    Assignee: Caterpillar Inc.
    Inventors: Philip J. Maziasz, Tim McGreevy, Michael James Pollard, Chad W. Siebenaler, Robert W. Swindeman