Patents by Inventor Philip J. Pietraski

Philip J. Pietraski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11140608
    Abstract: Methods and apparatuses for millimeter wave (mmW) beam acquisition are disclosed. An apparatus may include a processor and a transceiver configured to receive configuration information from a first network node using a first radio access technology (RAT). The configuration information may include an index associated with a beam of a second network node and timing information corresponding to the first RAT. The second network node may use a second RAT. The apparatus may be further configured to transmit a measurement report to the first network node that includes a measurement of the beam and index associated with the beam of the second network node.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: October 5, 2021
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Carl Wang, Yingxue K. Li, Onur Sahin, Philip J. Pietraski, Ravikumar V. Pragada, Gregg A. Charlton
  • Patent number: 11122587
    Abstract: Methods and apparatuses are described herein that facilitate mesh network communication by a millimeter wave base stations (mBs) or WTRUs as nodes of a directional mesh network with other nodes of the directional mesh network. The mB or WTRU may include a directional antenna configured to transmit and receive signals in specific directions during the mesh network communication to define a directional mesh network. The mBs or WTRUs may transmit transmission request messages to neighbor nodes, wherein the transmission request messages include transmission slot allocation bitmaps and channel quality indicator information (CQI). Then response messages from the neighbor nodes may be received, wherein the response messages include receive slot allocation bitmaps and resource allocation decisions. The mBs or WTRUs may then update their transmission slot allocation bitmaps based on the received response messages and transmit data packets in specific directions based on the updated transmission slot allocation bitmap.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: September 14, 2021
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Arnab Roy, Yugeswar Deenoo, Ravikumar V. Pragada, Onur Sahin, Philip J. Pietraski
  • Patent number: 11108500
    Abstract: Latency reduction by fast forward (FF) in multi-hop communication device and/or systems is disclosed. Packets may be received and forwarded using a codeword (CW)-based approach with and/or without per-CW CRC. A FF session may have a flow ID and packets may have sequence numbers. Packets targeted for FF may be divided into independently decodable CWs that may be transmitted in the next hop, for example, as soon as the destination is determined without waiting for an entire packet's arrival and/or for CRC verification. Low latency (e.g. FF) traffic may be indicated. CW-based FF may be extensible for an e2e RAN path from a WTRU to the last access node in a RAN. Intermediate metrics, a packet CRC and/or a per-CW CRC may be utilized for data integrity. HARQ and/or CW retransmission procedures may be implemented between network nodes for error handling.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: August 31, 2021
    Assignee: IDAC Holdings, Inc.
    Inventors: Philip J. Pietraski, Arnab Roy, Kyle Jung-Lin Pan, Alpaslan Demir, Muhammad U. Fazili, William E. Lawton, Mohamed Abou El Seoud, Kevin T. Wanuga, Ravikumar V. Pragada
  • Patent number: 11057868
    Abstract: A wireless transmit/receive unit (WTRU) receives radio resource assignment information over a physical downlink control channel. The WTRU determines whether the radio resource assignment information is intended for the WTRU based on WTRU identity-masked (ID-masked) cyclic redundancy check (CRC) bits. The WTRU determines whether the radio resource assignment information is for an uplink shared channel or a downlink shared channel. The WTRU utilizes the radio resource assignment information to transmit data over the uplink shared channel on a condition that the radio resource assignment information is determined to be for the uplink shared channel. The data is transmitted over the uplink shared channel a predetermined number of time slots after reception of the radio resource assignment information.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: July 6, 2021
    Assignee: InterDigital Technology Corporation
    Inventors: Marian Rudolf, Stephen G. Dick, Philip J. Pietraski
  • Publication number: 20210014798
    Abstract: A method for reporting power headroom is disclosed. Power headroom may be reported across all carriers (wideband), for a specific carrier, or for a carrier group. The formula used to calculate the power headroom depends on whether the carrier (or a carrier in the carrier group) has a valid uplink grant. If the carrier or carrier group does not have a valid uplink grant, the power headroom may be calculated based on a reference grant. The power headroom is calculated by a wireless transmit/receive unit and is reported to an eNodeB.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 14, 2021
    Applicant: InterDigital Patent Holdings, Inc.
    Inventors: Guodong Zhang, Erdem Bala, Philip J. Pietraski, Sung-Hyuk Shin, Kyle Jung-Lin Pan, Joseph S. Levy, Jin Wang, Peter S. Wang, Janet A. Stern-Berkowitz, John W. Haim
  • Publication number: 20210014847
    Abstract: A wireless transmit/receive unit (WTRU) (e.g., a millimeter WTRU (mWTRU)) may receive a first control channel using a first antenna pattern. The WTRU may receive a second control channel using a second antenna pattern. The WTRU may demodulate and decode the first control channel. The WTRU may demodulate and decode the second control channel. The WTRU may determine, using at least one of: the decoded first control channel or the second control channel, beam scheduling information associated with the WTRU and whether the WTRU is scheduled for an mmW segment. The WTRU may form a receive beam using the determined beam scheduling information. The WTRU receive the second control channel using the receive beam. The WTRU determine, by demodulating and decoding the second control channel, dynamic per-TTI scheduling information related to a data channel associated with the second control channel.
    Type: Application
    Filed: September 11, 2020
    Publication date: January 14, 2021
    Applicant: IDAC HOLDINGS, INC.
    Inventors: Tao Deng, Yugeswar Deenoo, Philip J. Pietraski, Ravikumar V. Pragada
  • Publication number: 20210007090
    Abstract: Methods of mapping, indicating, encoding and transmitting uplink (UL) grants and downlink (DL) assignments for wireless communications for carrier aggregation are disclosed. Methods to encode and transmit DL assignments and UL grants and map and indicate the DL assignments to DL component carriers and UL grants to UL component carriers are described. Methods include specifying the mapping rules for DL component carriers that transmit DL assignment and DL component carriers that receive physical downlink shared channel (PDSCH), and mapping rules for DL component carriers that transmit UL grants and UL component carriers that transit physical uplink shared channel (PUSCH) when using separate coding/separate transmission schemes.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Applicant: InterDigital Patent Holdings, Inc.
    Inventors: Kyle Jung-Lin Pan, Jean-Louis Gauvreau, Philip J. Pietraski, Stephen E. Terry, Guodong Zhang
  • Patent number: 10798663
    Abstract: A method for reporting power headroom is disclosed. Power headroom may be reported across all carriers (wideband), for a specific carrier, or for a carrier group. The formula used to calculate the power headroom depends on whether the carrier (or a carrier in the carrier group) has a valid uplink grant. If the carrier or carrier group does not have a valid uplink grant, the power headroom may be calculated based on a reference grant. The power headroom is calculated by a wireless transmit/receive unit and is reported to an eNodeB.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 6, 2020
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Guodong Zhang, Erdem Bala, Philip J. Pietraski, Sung-Hyuk Shin, Kyle Jung-Lin Pan, Joseph S. Levy, Jin Wang, Peter S. Wang, Janet A. Stern-Berkowitz, John W. Haim
  • Patent number: 10794985
    Abstract: A wireless transmit receive unit (WTRU) is configured to receive a reference signal of a first type. The first type is other than a demodulation reference signal (DM-RS). Reference signals of the first type are received in resource elements other than resource elements used for a primary synchronization signal or a secondary synchronization signal. The WTRU is configured to receive a radio resource control message indicating a subframe position in which the reference signal of the first type is transmitted and a periodicity of a transmission of the reference signal of the first type.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: October 6, 2020
    Assignee: InterDigital Patent Holdings, INC.
    Inventors: Guodong Zhang, Joseph S. Levy, Philip J. Pietraski, Janet A. Stern-Berkowitz, Charles A. Dennean, Marian Rudolf, John W. Haim
  • Publication number: 20200305089
    Abstract: Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuity may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
    Type: Application
    Filed: April 8, 2020
    Publication date: September 24, 2020
    Applicant: INTERDIGITAL PATENT HOLDINGS, INC.
    Inventors: Carl Wang, Yingxue K. Li, Kenneth Kearney, Philip J. Pietraski, Stephen E. Terry, Samian Kaur, Janet A. Stern-Berkowitz, Douglas R. Castor
  • Publication number: 20200304179
    Abstract: A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: INTERDIGITAL PATENT HOLDINGS, INC.
    Inventors: Steven FERRANTE, Arnab ROY, Philip J. PIETRASKI, Ravikumar V. PRAGADA
  • Patent number: 10785768
    Abstract: Methods of mapping, indicating, encoding and transmitting uplink (UL) grants and downlink (DL) assignments for wireless communications for carrier aggregation are disclosed. Methods to encode and transmit DL assignments and UL grants and map and indicate the DL assignments to DL component carriers and UL grants to UL component carriers are described. Methods include specifying the mapping rules for DL component carriers that transmit DL assignment and DL component carriers that receive physical downlink shared channel (PDSCH), and mapping rules for DL component carriers that transmit UL grants and UL component carriers that transit physical uplink shared channel (PUSCH) when using separate coding/separate transmission schemes.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: September 22, 2020
    Assignee: INTERDIGITAL PATENT HOLDINGS, INC.
    Inventors: Kyle Jung-Lin Pan, Jean-Louis Gauvreau, Philip J. Pietraski, Stephen E. Terry, Guodong Zhang
  • Publication number: 20200296720
    Abstract: A method and apparatus for transmitting uplink control information (UCI) for Long Term Evolution-Advanced (LTE-A) using carrier aggregation is disclosed. Methods for UCI transmission in the uplink control channel, uplink shared channel or uplink data channel are disclosed. The methods include transmitting channel quality indicators (CQI), precoding matrix indicators (PMI), rank indicators (RI), hybrid automatic repeat request (HARQ) acknowledgement/non-acknowledgement (ACK/NACK), channel status reports (CQI/PMI/RI), source routing (SR) and sounding reference signals (SRS). In addition, methods for providing flexible configuration in signaling UCI, efficient resource utilization, and support for high volume UCI overhead in LTE-A are disclosed.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Applicant: InterDigital Patent Holdings, Inc.
    Inventors: Erdem Bala, Philip J. Pietraski, Sung-Hyuk Shin, Guodong Zhang, Allan Y. Tsai, Joseph S. Levy, Pascal M. Adjakple, John W. Haim, Robert L. Olesen, Kyle Jung-Lin Pan
  • Patent number: 10779270
    Abstract: A wireless transmit/receive unit (WTRU) receives a downlink subframe having multiple component carriers, each component carrier having control information encoded in a physical data control channel (PDCCH). The WTRU performs a blind decoding of control information in a first PDCCH located within a first component carrier to obtain a location of a second PDCCH located within a second component carrier, where the location of the second PDCCH is relative to a location of the first PDCCH as control channel element offset. The WTRU decodes the second PDCCH at the obtained location.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: September 15, 2020
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Kyle Jung-Lin Pan, Jean-Louis Gauvreau, Guodong Zhang, Philip J. Pietraski, Sung-Hyuk Shin
  • Patent number: 10716101
    Abstract: A method and apparatus for transmitting uplink control information (UCI) for Long Term Evolution-Advanced (LTE-A) using carrier aggregation is disclosed. Methods for UCI transmission in the uplink control channel, uplink shared channel or uplink data channel are disclosed. The methods include transmitting channel quality indicators (CQI), precoding matrix indicators (PMI), rank indicators (RI), hybrid automatic repeat request (HARQ) acknowledgement/non-acknowledgement (ACK/NACK), channel status reports (CQI/PMI/RI), source routing (SR) and sounding reference signals (SRS). In addition, methods for providing flexible configuration in signaling UCI, efficient resource utilization, and support for high volume UCI overhead in LTE-A are disclosed.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 14, 2020
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Erdem Bala, Philip J. Pietraski, Sung-Hyuk Shin, Guodong Zhang, Allan Y. Tsai, Joseph S. Levy, Pascal M. Adjakple, John W. Haim, Robert L. Olesen, Kyle Jung-Lin Pan
  • Publication number: 20200107276
    Abstract: A wireless transmit/receive unit (WTRU) receives first timing advances and first power control commands from a first eNodeB and second timing advances and second power control commands from a second eNodeB and transmits, to the first eNodeB, a first physical uplink control channel using a first uplink component carrier. The first physical uplink control channel has a first timing adjusted by the first timing advances but not by the second timing advances and a first power level adjusted by the first power control commands but not by the second power control commands. The WTRU transmits a second physical uplink control channel using a second uplink component carrier. The second physical uplink control channel has a second timing adjusted by the second timing advances but not by the first timing advances and a second power level adjusted by the second power control commands but not by the first power control commands.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: InterDigital Patent Holdings, Inc.
    Inventors: Philip J. Pietraski, Rui Yang, Kai Li, Carl Wang, Tao Deng, Samian Kaur, Erdem Bala, Ravikumar V. Pragada
  • Publication number: 20200084680
    Abstract: Systems, methods, and instrumentalities are disclosed for a wireless transmit/receive unit (WTRU) comprising a processor configured to receive a set of gap patterns, and measurement activities associated therewith, wherein each of the gap patterns includes an identifier for the measurement activity to be performed, and measure a signal pursuant to at least one of the gap patterns to obtain a measurement.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Applicant: IDAC Holdings, Inc
    Inventors: Yugeswar Deenoo, Tao Deng, Ravikumar Pragada, Philip J. Pietraski
  • Publication number: 20200059870
    Abstract: A method and apparatus for power control for distributed wireless communication is disclosed including one or more power control loops associated with a wireless transmit/receive unit (WTRU). Each power control loop may include open loop power control or closed loop power control. A multi-phase power control method is also disclosed with each phase representing a different time interval and a WTRU sends transmissions at different power levels to different set of node-Bs or relay stations during different phases to optimize communications.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Applicant: InterDigital Patent Holdings, Inc.
    Inventors: Zinan Lin, Alexander Reznik, Prabhakar R. Chitrapu, Mihaela C. Beluri, Eldad M. Zeira, Philip J. Pietraski, Sung-Hyuk Shin, Gregg A. Charlton
  • Patent number: 10567147
    Abstract: Embodiments contemplate TDD systems and techniques where timeslots may be allocated as DL, UL, or FDSC; the base station (BS) may be full duplex singled channel (FDSC) capable; and some, all, or none of the UEs (or WTRUs) may be FDSC capable. In one or more embodiments, FDSC1 timeslots may be contemplated that may be used (in some embodiments perhaps exclusively used) by a pair of radios, for example one BS and one UE, both having FD capability. In one or more embodiments, FDSC timeslots may be shared among a BS with FDSC capability and two or more UEs, that may be half duplex (HD). Embodiments also contemplate various FDD systems and techniques, including full duplex FDD systems and techniques.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: February 18, 2020
    Assignee: IDAC Holdings, Inc.
    Inventors: Robert A. DiFazio, Philip J. Pietraski, Rui Yang, Erdem Bala, Jialing Li
  • Publication number: 20200053800
    Abstract: Methods, devices and systems are provided for performing a random access (RA) procedure. A wireless transmit/receive unit (WTRU) may be configured to receive RA resource sets, where each of the RA resource sets is associated with a node-B directional beam, select an RA resource set from among the RA resource sets, and initiate an RA procedure based on the selected RA resource set. The RA procedure may include selecting multiple preambles which include a preamble for each resource of a plurality of resources corresponding to the selected RA resource set. The WTRU may be configured to sequentially transmit the selected multiple preambles in sequential RA transmissions, and may be configured to receive, from a node-B, in response to the RA transmissions, at least one RA response (RAR), where each of the received at least one RAR corresponds to one of the transmitted multiple preambles.
    Type: Application
    Filed: September 25, 2019
    Publication date: February 13, 2020
    Applicant: IDAC Holdings, Inc.
    Inventors: Tao Deng, Philip J. Pietraski, Ravikumar V. Pragada, Yugeswar Deenoo, Janet A. Stern-Berkowitz, Moon-il Lee, Mihaela C. Beluri, Kyle Jung-Lin Pan