Patents by Inventor Pierre Mowat

Pierre Mowat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230109283
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRD and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 6, 2023
    Applicants: NANOH, UNIVERSITE LYON 1 CLAUDE BERNARD, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
    Inventors: François LUX, Olivier TILLEMENT, Maxime SAINT JEAN, Pierre MOWAT, Pascal PERRIAT, Stéphane ROUX, Anna MIGNOT
  • Patent number: 11497818
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRI) and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: November 15, 2022
    Assignees: NANOH, UNIVERSITE LYON 1 CLAUDE BERNARD, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
    Inventors: François Lux, Olivier Tillement, Maxime Saint Jean, Pierre Mowat, Pascal Perriat, Stéphane Roux, Anna Mignot
  • Patent number: 10987435
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRI) and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies. The method for the production of these nanoparticles and the applications thereof in imaging and in therapy also form part of the invention.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: April 27, 2021
    Assignees: INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1, NANOH
    Inventors: François Lux, Olivier Tillement, Maxime Saint Jean, Pierre Mowat, Pascal Perriat, Stéphane Roux, Anna Mignot
  • Publication number: 20180264145
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRI) and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Applicants: NANOH, UNIVERSITE LYON 1 CLAUDE BERNARD, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
    Inventors: François LUX, Olivier TILLEMENT, Maxime SAINT JEAN, Pierre MOWAT, Pascal PERRIAT, Stéphane ROUX, Anna MIGNOT
  • Publication number: 20180008729
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRI) and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies. The method for the production of these nanoparticles and the applications thereof in imaging and in therapy also form part of the invention.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 11, 2018
    Inventors: François LUX, Olivier TILLEMENT, Maxime SAINT JEAN, Pierre MOWAT, Pascal PERRIAT, Stéphane ROUX, Anna MIGNOT
  • Publication number: 20130195766
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRI) and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 1, 2013
    Applicants: NANOH, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE LYON 1 CLAUDE BERNARD
    Inventors: François Lux, Olivier Tillement, Maxime Saint Jean, Pierre Mowat, Pascal Perriat, Stéphane Roux, Anna Mignot