Patents by Inventor Pietro Baita

Pietro Baita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9938359
    Abstract: A process for the preparation of ethylene polymers comprising polymerizing ethylene, optionally with one or more ?-olefin comonomers, in the presence of: (i) a solid catalyst component comprising titanium, magnesium, halogen and optionally an internal electron-donor compound, (ii) an aluminum alkyl compound, and (iii) an antistatic compound selected among the hydroxyesters with at least two free hydroxyl groups, wherein the weight ratio of aluminum alkyl compound to solid catalyst component is higher than 0.80 and the weight ratio of antistatic compound to aluminum alkyl compound is higher than 0.10.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: April 10, 2018
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Massimo Covezzi, Gabriele Mei, Pietro Baita, Lorella Marturano
  • Patent number: 9932465
    Abstract: A process for preparing a polyolefin, including polymerizing olefins in the presence of an antistatic agent made from or containing an alkylene oxide derived polymer made from or containing in average from about 10 to about 200 repeating units —(CH2—CHR—O)— with R being hydrogen or an alkyl group having from 1 to 6 carbon atoms, wherein the alkylene oxide derived polymer is a random copolymer of ethylene oxide and other alkylene oxides and a ratio of n:m is in the range of from 6:1 to 1:1, wherein (n) is the average number of repeating units —(CH2—CH2—O)— derived from ethylene oxide and (m) is the average number of repeating units —(CH2—CHR?—O)— derived from the other alkylene oxides with R? being an alkyl group having from 1 to 6 carbon atoms, and the end groups of the alkylene oxide derived polymer are —OH groups.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: April 3, 2018
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerd Mannebach, Bernd Lothar Marczinke, Gerhardus Meier, Ulf Schueller, Shahram Mihan, Andreas Maus, Pietro Baita, Maria Di Diego, Lorella Marturano
  • Publication number: 20180072876
    Abstract: A process for preparing a polyolefin, including polymerizing olefins in the presence of an antistatic agent made from or containing an alkylene oxide derived polymer made from or containing in average from about 10 to about 200 repeating units —(CH2—CHR—O)— with R being hydrogen or an alkyl group having from 1 to 6 carbon atoms, wherein the alkylene oxide derived polymer is a random copolymer of ethylene oxide and other alkylene oxides and a ratio of n:m is in the range of from 6:1 to 1:1, wherein (n) is the average number of repeating units —(CH2—CH2—O)— derived from ethylene oxide and (m) is the average number of repeating units —(CH2—CHR?—O)— derived from the other alkylene oxides with R? being an alkyl group having from 1 to 6 carbon atoms, and the end groups of the alkylene oxide derived polymer are —OH groups.
    Type: Application
    Filed: March 23, 2016
    Publication date: March 15, 2018
    Applicant: Basell Polyolefine GmbH
    Inventors: Gerd Mannebach, Bernd Lothar Marczinke, Gerhardus Meier, Ulf Schueller, Shahram Mihan, Andreas Maus, Pietro Baita, Maria Di Diego, Lorella Marturano
  • Patent number: 9873754
    Abstract: A process for the gas-phase polymerization of ethylene or a mixture of ethylene and one or more 1 olefins in the presence of a polymerization catalyst system comprising the steps a) feeding a solid catalyst component, which was obtained by contacting at least a magnesium compound and a titanium compound, to a continuously operated apparatus and contacting the solid catalyst component with an aluminum alkyl compound at a temperature of from 0° C. to 70° C. in a way that the mean residence time of the solid catalyst component in contact with the aluminum alkyl compound is from 5 to 300 minutes; b) transferring the catalyst component formed in step a) into another continuously operated apparatus and prepolymerizing it with ethylene or a mixture of ethylene and one or more 1 olefins in suspension at a temperature of from 10° C. to 80° forming polymer in an amount of from 0.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: January 23, 2018
    Assignee: Basell Polyolefine GmbH
    Inventors: Gabriele Mei, Pietro Baita, Lorella Marturano, Antonio Mazzucco, Roberta Pica, Gerhardus Meier, Ulf Schueller
  • Publication number: 20170327603
    Abstract: The present disclosure provides a gas-phase polymerization process for preparing polyethylene, wherein halogenated alcohols in combination with a Ti based catalyst component and aluminum alkyls as co-catalyst suppress ethane formation or increase polymerization activity.
    Type: Application
    Filed: December 1, 2015
    Publication date: November 16, 2017
    Applicant: BASELL POLIOLEFINE ITALIA S.R.L.
    Inventors: PIETRO BAITA, TIZIANO DALL'OCCO, MARIA DI DIEGO, DARIO LIGUORI, LORELLA MARTURANO, ANDREAS MAUS, GABRIELE MEI, GERHARDUS MEIER, GIAMPIERO MORINI, ROBERTA PICA, ULF SCHUELLER
  • Publication number: 20170114254
    Abstract: The present technology relates to a method of introducing a supported antistatic compound that does not comprise a transition-metal-based catalyst component for use in an olefin polymerization reactor. In some embodiments, the methods disclosed herein avoid the formation of polymer agglomerates in the reactor and minimize potentially negative effects on catalyst yield.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Applicant: BASELL POLIOLEFINE ITALIA S.R.L.
    Inventors: MASSIMO COVEZZI, GABRIELE MEI, MARIA DI DIEGO, PIERO GESSI, PIETRO BAITA, ROBERTA PICA
  • Patent number: 9574026
    Abstract: The present technology relates to a method of introducing a supported antistatic compound that does not comprise a transition-metal-based catalyst component for use in an olefin polymerization reactor. In some embodiments, the methods disclosed herein avoid the formation of polymer agglomerates in the reactor and minimize potentially negative effects on catalyst yield.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: February 21, 2017
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Massimo Covezzi, Gabriele Mei, Maria Di Diego, Piero Gessi, Pietro Baita, Roberta Pica
  • Patent number: 9458259
    Abstract: Process for treating polyolefin particles obtained by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, the process comprising the steps of a) discharging the polyolefin particles continuously or discontinuously from the gas-phase polymerization reactor and transferring the particles to a first degassing vessel; b) contacting therein the polyolefin particles with a gaseous stream comprising at least 85 mol-% of C3-C5 alkane while the polyolefin particles have an average residence time in the first degassing vessel of from 5 minutes to 5 hours; c) transferring the polyolefin particles to a second degassing vessel; d) contacting therein the polyolefin particles with a stream comprising nitrogen and steam while the polyolefin particles have an average residence time in the second degassing vessel of from 5 minutes to 2 hours, wherein the contacting is carried out at conditions un
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: October 4, 2016
    Assignee: Basell Polyolefine GmbH
    Inventors: Giuseppe Penzo, Giulia Mei, Gabriele Mei, Antonio De Lucia, Pietro Baita
  • Publication number: 20160208026
    Abstract: The present technology relates to a method of introducing a supported antistatic compound that does not comprise a transition-metal-based catalyst component for use in an olefin polymerization reactor. In some embodiments, the methods disclosed herein avoid the formation of polymer agglomerates in the reactor and minimize potentially negative effects on catalyst yield.
    Type: Application
    Filed: August 5, 2014
    Publication date: July 21, 2016
    Applicant: BASELL POLYOLEFINE ITALIA S.R.L.
    Inventors: MASSIMO COVEZZI, GABRIELE MEI, MARIA DI DIEGO, PIERO GESSI, PIETRO BAITA, ROBERTA PICA
  • Publication number: 20160108148
    Abstract: A process for the gas-phase polymerization of ethylene or a mixture of ethylene and one or more 1 olefins in the presence of a polymerization catalyst system comprising the steps a) feeding a solid catalyst component, which was obtained by contacting at least a magnesium compound and a titanium compound, to a continuously operated apparatus and contacting the solid catalyst component with an aluminum alkyl compound at a temperature of from 0° C. to 70° C. in a way that the mean residence time of the solid catalyst component in contact with the aluminum alkyl compound is from 5 to 300 minutes; b) transferring the catalyst component formed in step a) into another continuously operated apparatus and prepolymerizing it with ethylene or a mixture of ethylene and one or more 1 olefins in suspension at a temperature of from 10° C. to 80° forming polymer in an amount of from 0.
    Type: Application
    Filed: May 13, 2014
    Publication date: April 21, 2016
    Applicant: Basell Polyolefine GmbH
    Inventors: Gabriele Mei, Pietro Baita, Lorella Marturano, Antonio Mazzucco, Roberta Pica, Gerhardus Meier, Ulf Schueller
  • Publication number: 20150376303
    Abstract: A process for the preparation of ethylene polymers comprising polymerizing ethylene, optionally with one or more ?-olefin comonomers, in the presence of: (i) a solid catalyst component comprising titanium, magnesium, halogen and optionally an internal electron-donor compound, (ii) an aluminum alkyl compound, and (iii) an antistatic compound selected among the hydroxyesters with at least two free hydroxyl groups, wherein the weight ratio of aluminum alkyl compound to solid catalyst component is higher than 0.80 and the weight ratio of antistatic compound to aluminum alkyl compound is higher than 0.10.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 31, 2015
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Massimo Covezzi, Gabriele Mei, Pietro Baita, Lorella Marturano
  • Publication number: 20150322178
    Abstract: Process for treating polyolefin particles obtained by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, the process comprising the steps of a) discharging the polyolefin particles continuously or discontinuously from the gas-phase polymerization reactor and transferring the particles to a first degassing vessel; b) contacting therein the polyolefin particles with a gaseous stream comprising at least 85 mol-% of C3-C5 alkane while the polyolefin particles have an average residence time in the first degassing vessel of from 5 minutes to 5 hours; c) transferring the polyolefin particles to a second degassing vessel; d) contacting therein the polyolefin particles with a stream comprising nitrogen and steam while the polyolefin particles have an average residence time in the second degassing vessel of from 5 minutes to 2 hours, wherein the contacting is carried out at conditions un
    Type: Application
    Filed: December 11, 2013
    Publication date: November 12, 2015
    Inventors: Giuseppe Penzo, Giulia Mei, Gabriele Mei, Antonio De Lucia, Pietro Baita
  • Publication number: 20150315302
    Abstract: Process for preparing a polyolefin polymer comprising the steps of a) forming a particulate polyolefin polymer by polymerizing one or more olefins in the presence of a polymerization catalyst system in a polymerization reactor; b) discharging the formed polyolefin particles from the polymerization reactor; c) degassing the polyolefin particles by a process comprising at least a final step of contacting the polyolefin particles with a nitrogen stream in a degassing vessel; and d) transferring the polyolefin particles from the vessel, in which the contacting of the polyolefin particles with the nitrogen stream is carried out, to a melt mixing device, in which the polyolefin particles are melted, mixed and thereafter pelletized, without passing the particles through a buffering device, wherein the degassing vessel is only partly filled with polyolefin particles and the empty volume within the degassing vessel is sufficient to take up additional polyolefin particles for at least 3 hours if the transfer of pol
    Type: Application
    Filed: December 11, 2013
    Publication date: November 5, 2015
    Inventors: Giuseppe Penzo, Giulia Mei, Gabriele Mei, Antonio De Lucia, Pietro Baita
  • Patent number: 9133291
    Abstract: Process for transferring polyolefin particles from a first gas-phase polymerization reactor to a second gas-phase polymerization reactor in a multistage polymerization of olefins carried out in at least two serially connected gas-phase polymerization reactors, wherein the first gas-phase reactor is a fluidized-bed reactor comprising a gas distribution grid and a settling pipe, which is integrated with its upper opening into the distribution grid and contains a bed of polyolefin particles which moves from top to bottom of the settling pipe, the process comprising the steps of introducing a fluid into the settling pipe in an amount that an upward stream of the fluid is induced in the bed of polyolefin particles above the fluid introduction point; withdrawing polyolefin particles from the lower end of the settling pipe; and transferring the withdrawn polyolefin particles into the second gas-phase polymerization reactor, process for polymerizing olefins comprising such a process for transferring polyolefin p
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: September 15, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Massimo Covezzi, Giuseppe Penzo, Gabriele Mei, Giulia Mei, Pietro Baita, Gerhardus Meier, Antonio De Lucia, Ulf Schueller, Gianpiero Ferraro
  • Patent number: 9127095
    Abstract: Catalyst component comprising Mg, Ti, and halogen atoms, and is characterized in that (a) the Ti atoms are present in an amount higher than 4% based on the total weight of the said catalyst component, (b) the amount of Mg and Ti atoms is such that the Mg/Ti molar ratio is higher than 2 and (c) by a X-ray diffraction spectrum, in which, in the range of 2? diffraction angles between 47° and 52°, at least two diffraction lines are present at diffraction angles 2? of 48.3±0.2°, and 50.0±0.2°, the most intense diffraction lines being the one at 2? of 50.0±0.2°, the intensity of the other diffraction line being equal to or lower than the intensity of the most intense diffraction line.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 8, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Diego Brita, Gianni Collina, Daniele Evangelisti, Anna Fait, Benedetta Gaddi, Giampiero Morini, Pietro Baita, Lorella Marturano, Harry Mavridis
  • Publication number: 20140309384
    Abstract: Process for transferring polyolefin particles from a first gas-phase polymerization reactor to a second gas-phase polymerization reactor in a multistage polymerization of olefins carried out in at least two serially connected gas-phase polymerization reactors, wherein the first gas-phase reactor is a fluidized-bed reactor comprising a gas distribution grid and a settling pipe, which is integrated with its upper opening into the distribution grid and contains a bed of polyolefin particles which moves from top to bottom of the settling pipe, the process comprising the steps of introducing a fluid into the settling pipe in an amount that an upward stream of the fluid is induced in the bed of polyolefin particles above the fluid introduction point; withdrawing polyolefin particles from the lower end of the settling pipe; and transferring the withdrawn polyolefin particles into the second gas-phase polymerization reactor, process for polymerizing olefins comprising such a process for transferring polyolefin partic
    Type: Application
    Filed: December 4, 2012
    Publication date: October 16, 2014
    Applicant: Basell Polyolefine GmbH
    Inventors: Massimo Covezzi, Giuseppe Penzo, Gabriele Mei, Giulia Mei, Pietro Baita, Gerhardus Meier, Antonio De Lucia, Ulf Schueller, Gianpiero Ferraro
  • Patent number: 8735514
    Abstract: A method for feeding an antistatic compound to a polymerization reactor, the method comprising the steps of: a) dispersing, under mixing conditions, a catalyst powder and an antistatic compound in a liquid medium, so as to form a suspension of the catalyst powder and of the antistatic compound in the liquid medium; b) transferring the obtained suspension to a polymerization reactor.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: May 27, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Pietro Baita, Paolo Ferrari, Ines Mingozzi, Lorella Pedriali, Maria Di Diego, Roberta Pica
  • Publication number: 20130197171
    Abstract: A method for feeding an antistatic compound to a polymerization reactor comprising the steps of: a) dispersing, under mixing conditions, a catalyst powder and an antistatic compound in an oil, so as to form a suspension of catalyst powder and antistatic compound in said oil; b) successively adding, under mixing conditions, a molten thickening agent to said suspension from step a), while maintaining said suspension at a temperature such that said thickening agent solidifies on contact with said suspension; c) transferring the product obtained from b) to a polymerization reactor.
    Type: Application
    Filed: September 26, 2011
    Publication date: August 1, 2013
    Applicant: Basell Polyolefine GmbH
    Inventors: Pietro Baita, Paolo Ferrari, Ines Mingozzi, Lorella Pedriali, Maria Di Diego, Roberta Pica
  • Publication number: 20130197169
    Abstract: A method for feeding an antistatic compound to a polymerization reactor, the method comprising the steps of: a) dispersing, under mixing conditions, a catalyst powder and an antistatic compound in a liquid medium, so as to form a suspension of the catalyst powder and of the antistatic compound in the liquid medium; b) transferring the obtained suspension to a polymerization reactor.
    Type: Application
    Filed: September 29, 2011
    Publication date: August 1, 2013
    Applicant: Baseball Polyolefine GmbH
    Inventors: Pietro Baita, Paolo Ferrari, Ines Mingozzi, Lorella Pedriali, Maria Di Diego, Roberta Pica
  • Publication number: 20130190466
    Abstract: Extruded articles, particularly films, comprising an ethylene polymer obtained by a polymerization process carried out in the presence the products obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and optionally one or more internal electron donor compounds, (b) an aluminum hydrocarbyl compound, (c) optionally an external electron donor compound, and (d) a polyalcohol partially esterified with carboxylic acids with alkyl groups having at least 10 carbon atoms.
    Type: Application
    Filed: September 26, 2011
    Publication date: July 25, 2013
    Applicant: BASELL POLYOFINE GmbH
    Inventors: Pietro Baita, Diego Brita, Paolo Ferrari, Harilaos Mavridis, Gabriele Mei, Roberta Pica, Jens Wiesecke