Patents by Inventor Ping-Yin Liu

Ping-Yin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190092627
    Abstract: A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.
    Type: Application
    Filed: December 27, 2017
    Publication date: March 28, 2019
    Inventors: Hung-Hua Lin, Chang-Ming Wu, Chung-Yi Yu, Ping-Yin Liu, Jung-Huei Peng
  • Publication number: 20190094682
    Abstract: A method for forming a pellicle apparatus involves forming a device substrate by depositing one or more pellicle layers defined over a base device layer, where a release layer is formed thereover. An adhesive layer is formed over a transparent carrier substrate. The adhesive layer is bonded to the release layer, defining a composite substrate comprised of the device and carrier substrates. The base device layer is removed from the composite structure and a pellicle frame is attached to an outermost one of the pellicle layers. A pellicle region is isolated from a remainder of the composite structure, and an ablation of the release layer is performed through the transparent carrier substrate, defining the pellicle apparatus comprising a pellicle film attached to the pellicle frame. The pellicle apparatus is then from a remaining portion of the composite substrate.
    Type: Application
    Filed: June 20, 2018
    Publication date: March 28, 2019
    Inventors: Ping-Yin Liu, Chang-Ming Wu, Chia-Shiung Tsai, Xin-Hua Huang
  • Publication number: 20190096848
    Abstract: An apparatus and method is provided for controlling a propagation of a bond wave during semiconductor processing. The apparatus has a first chuck to selectively retain a first workpiece. A second chuck selectively retains a second workpiece. The first and second chucks selectively secure at least a periphery of the respective first workpiece and second workpiece. An air vacuum is circumferentially located in a region between the first chuck and second chuck. The air vacuum is configured to induce a vacuum between the first workpiece and second workpiece to selectively bring the first workpiece and second workpiece together from a propagation point. The air vacuum can be localized air vacuum guns, a vacuum disk, or an air curtain positioned about the periphery of the region between the first chuck and second chuck. The air curtain induces a lower pressure within the region between the first and second chucks.
    Type: Application
    Filed: March 26, 2018
    Publication date: March 28, 2019
    Inventors: Xin-Hua Huang, Kuan-Liang Liu, Kuo Liang Lu, Ping-Yin Liu
  • Publication number: 20190051628
    Abstract: Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Ping-Yin Liu, Shih-Wei Lin, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20190035681
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 10160638
    Abstract: A semiconductor structure may include a first device having first surface with a first bonding layer formed thereon and a second device having a first surface with a second bonding layer formed thereon. The first bonding layer may provide an electrically conductive path to at least one electrical device in the first device. The second bonding layer may provide an electrically conductive path to at least one electrical device in the second device. One of the first or the second devices may include MEMS electrical devices. The first and/or the second bonding layers may be formed of a getter material, which may provide absorption for outgassing.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Cheng Chu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh, Lan-Lin Chao, Chun-Wen Cheng
  • Patent number: 10128209
    Abstract: A semiconductor device and a method of fabricating the same are introduced. In an embodiment, one or more passivation layers are formed over a first substrate. Recesses are formed in the passivation layers and one or more conductive pads are formed in the recesses. One or more barrier layers are formed between the passivation layers and the conductive pads. The conductive pads of the first substrate are aligned to the conductive pads of a second substrate and are bonded using a direct bonding method.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: November 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ping-Yin Liu, Lan-Lin Chao, Cheng-Tai Hsiao, Xin-Hua Huang, Hsun-Chung Kuang
  • Patent number: 10103122
    Abstract: Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 16, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ping-Yin Liu, Shih-Wei Lin, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 10096645
    Abstract: Methods and apparatus for packaging a backside illuminated (BSI) image sensor or a sensor device with an application specific integrated circuit (ASIC) are disclosed. According to an embodiment, a sensor device may be bonded together face-to-face with an ASIC without using a carrier wafer, where corresponding bond pads of the sensor are aligned with bond pads of the ASIC and bonded together, in a one-to-one fashion. A column of pixels of the sensor may share a bond pad connected by a shared inter-metal line. The bond pads may be of different sizes and configured in different rows to be disjoint from each other. Additional dummy pads may be added to increase the bonding strength between the sensor and the ASIC.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: October 9, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ying Chen, Ping-Yin Liu, Calvin Yi-Ping Chao, Tzu-Jui Wang, Jen-Cheng Liu, Dun-Nian Yaung, Lan-Lin Chao
  • Patent number: 10090196
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: October 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20180230003
    Abstract: An embodiment method includes forming a first plurality of bond pads on a device substrate, depositing a spacer layer over and extending along sidewalls of the first plurality of bond pads, and etching the spacer layer to remove lateral portions of the spacer layer and form spacers on sidewalls of the first plurality of bond pads. The method further includes bonding a cap substrate including a second plurality of bond pads to the device substrate by bonding the first plurality of bond pads to the second plurality of bond pads.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Chih-Ming Chen, Ping-Yin Liu, Chung-Yi Yu, Yeur-Luen Tu
  • Patent number: 10049901
    Abstract: A method includes placing a first wafer onto a surface of a first wafer chuck, the first wafer chuck including multiple first profile control zones separated by one or more shared flexible membranes. The method also includes setting a first profile of the surface of the first wafer chuck. Setting a first profile of the surface of the first wafer chuck includes adjusting a first volume of a first profile control zone of the multiple first profile control zones. Setting a first profile of the surface of the first wafer chuck also includes adjusting a second volume of a second profile control zone of the multiple first profile control zones, the first volume of the first profile control zone being adjusted independently from the second volume of the second profile control zone, and the second adjustable volume encircling the first adjustable volume.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ping-Yin Liu, Yen-Chang Chu, Xin-Hua Huang, Lan-Lin Chao, Yeur-Luen Tu, Ru-Liang Lee
  • Publication number: 20180226337
    Abstract: A method of fabricating a semiconductor device includes providing a first substrate comprising a first conductive element exposed at a surface of the first substrate; forming a patterned photoresist layer atop the first conductive element, whereby the patterned photoresist layer provides openings exposing the first conductive element; forming a first metal layer in the openings and directly atop the first conductive element; forming a first insulator layer over the first metal layer and the first substrate; and polishing the first metal layer and the first insulator layer, resulting in a first interface surface over the first substrate wherein the first interface surface includes part of the first metal layer and the first insulator layer.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 9, 2018
    Inventors: Ping-Yin Liu, Kai-Wen Cheng, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 10037968
    Abstract: Alignment systems, and wafer bonding alignment systems and methods are disclosed. In some embodiments, an alignment system for a wafer bonding system includes means for monitoring an alignment of a first wafer and a second wafer, and means for adjusting a position of the second wafer. The alignment system includes means for feeding back a relative position of the first wafer and the second wafer to the means for adjusting the position of the second wafer before and during a bonding process for the first wafer and the second wafer.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: July 31, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Xin-Hua Huang, Xiaomeng Chen, Ping-Yin Liu, Lan-Lin Chao
  • Patent number: 10012899
    Abstract: A method includes depositing a first material layer over a first substrate; and depositing a graphene layer over the first material layer. The method further includes depositing an amorphous silicon layer over the graphene layer and bonding the amorphous silicon layer to a second substrate, thereby forming an assembly. The method further includes annealing the assembly, thereby converting the amorphous silicon layer to a silicon oxide layer. The method further includes removing the first substrate from the assembly and removing the first material layer from the assembly, thereby exposing the graphene layer.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 3, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chiang Tu, Chun-Lang Chen, Chue San Yoo, Jong-Yuh Chang, Chia-Shiung Tsai, Ping-Yin Liu, Hsin-Chang Lee, Chih-Cheng Lin, Yun-Yue Lin
  • Patent number: 9960129
    Abstract: A method of forming a hybrid bonding structure includes depositing an etch stop layer over surface of a substrate, wherein the substrate comprises a conductive structure, and the etch stop layer contacts the conductive structure. The method further includes depositing a dielectric material over the etch stop layer. The method further includes depositing a first diffusion barrier layer over the dielectric material. The method further includes forming an opening extending through the etch stop layer, the dielectric material and the diffusion barrier layer. The method further includes lining the opening with a second diffusion barrier layer. The method further includes depositing a conductive pad on the second diffusion barrier layer in the opening, wherein a surface of the first diffusion barrier layer is aligned with a surface of the conductive pad.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: May 1, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Szu-Ying Chen, Chen-Jong Wang, Chih-Hui Huang, Xin-Hua Huang, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9957156
    Abstract: An embodiment method includes forming a first plurality of bond pads on a device substrate, depositing a spacer layer over and extending along sidewalls of the first plurality of bond pads, and etching the spacer layer to remove lateral portions of the spacer layer and form spacers on sidewalls of the first plurality of bond pads. The method further includes bonding a cap substrate including a second plurality of bond pads to the device substrate by bonding the first plurality of bond pads to the second plurality of bond pads.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: May 1, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Ming Chen, Ping-Yin Liu, Chung-Yi Yu, Yeur-Luen Tu
  • Patent number: 9953847
    Abstract: A semiconductor structure includes a molding compound, a conductive plug, and a cover. The conductive plug is in the molding compound. The cover is over a top meeting joint between the conductive plug and the molding compound. The semiconductor structure further has a dielectric. The dielectric is on the cover and the molding compound.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: April 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Lan-Lin Chao
  • Patent number: 9917069
    Abstract: A method of cleaning an apparatus for processing a semiconductor wafer includes providing a first device having a first surface configured to load a first semiconductor wafer, a second device having a second surface configured to load a second semiconductor wafer, and a first cleaning module; and cleaning the second surface by moving the first cleaning module across the second surface in a first direction with respect to the second device.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: March 13, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ping-Yin Liu, Yeong-Jyh Lin, Xin-Hua Huang, Chia-Shiung Tsai
  • Publication number: 20180059534
    Abstract: A method includes depositing a first material layer over a first substrate; and depositing a graphene layer over the first material layer. The method further includes depositing an amorphous silicon layer over the graphene layer and bonding the amorphous silicon layer to a second substrate, thereby forming an assembly. The method further includes annealing the assembly, thereby converting the amorphous silicon layer to a silicon oxide layer. The method further includes removing the first substrate from the assembly and removing the first material layer from the assembly, thereby exposing the graphene layer.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 1, 2018
    Inventors: Chih-Chiang Tu, Chun-Lang Chen, Chue San Yoo, Jong-Yuh Chang, Chia-Shiung Tsai, Ping-Yin Liu, Hsin-Chang Lee, Chih-Cheng Lin, Yun-Yue Lin