Patents by Inventor Prabodh Mathur

Prabodh Mathur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10039599
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating tissue near a body passageway using an apparatus including a catheter having a plurality of electrodes, a radio-frequency energy generator, and a controller coupling the energy generator to the plurality of electrodes and configured to selectively energize the electrodes. The method may include using the apparatus to subject the tissue near the body passageway to a plurality of energy treatment cycles. The treatment cycle may include determining desired voltages for at least a subset of the electrodes for maintaining a predetermined target temperature profile proximate the subset of electrodes, setting an output voltage of the energy generator to correspond to the desired voltage determined for one of the electrodes, and energizing at least some of the electrodes at the output voltage to deliver energy to the body passageway.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 7, 2018
    Assignee: Vessix Vascular, Inc.
    Inventor: Prabodh Mathur
  • Patent number: 9987085
    Abstract: Medical devices and methods for making and using the same are disclosed. An example device may include an expandable balloon including an outer surface. At least one flexible circuit may be mounted on the outer surface of the expandable balloon. The at least one flexible circuit may include a first insulating layer, at least one heat sensing device positioned at least partially within the first insulating layer, a conductive layer above the first insulating layer, at least a portion of which is electrically coupled to the heat sensing device, a second insulating layer above the conductive layer, and at least one electrode associated with the conductive layer.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: June 5, 2018
    Assignee: Vessix Vascular, Inc.
    Inventors: Prabodh Mathur, Rabih Nassif, Lee Henry, Andres Dandler, Joseluis Espinosa
  • Publication number: 20180140356
    Abstract: A medical device for tissue ablation may include a catheter shaft, an expandable member disposed on or coupled to the catheter shaft, and a plurality of elongate electrode assemblies each constructed as a flexible circuit. The expandable member may be configured to shift between an unexpanded configuration and an expanded configuration. The plurality of electrode assemblies may be disposed on an outer surface of the expandable member. Each of the plurality of electrode assemblies may include a temperature sensor aligned with two or more electrodes.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Inventors: HONG CAO, TRAVIS J. SCHAUER, HENRY H. LEE, PRABODH MATHUR, RABIH NASSIF, ANDRES DANDLER
  • Publication number: 20180117344
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assessing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG patch adhered to a skin surface of a patient and connected to a lead extending through a percutaneous incission to a target tissue location. The EPG may be a modified version of the IPG used in the permanent system, the EPG may be smaller and/or lighter than the corresponding IPG device. The EPG and a lead extension may be sealed to allow improved patient mobility and reduced risk of infection. The EPG may be compatible with wireless systems used to control and monitor the IPG such that operation and control of the EPG is substantially the same in each system to allow seemless conversion to the permantly implanted system.
    Type: Application
    Filed: September 28, 2017
    Publication date: May 3, 2018
    Inventors: Prabodh Mathur, Rinda Sama, Dennis Schroeder, Eric Schmid, Stuart Karten
  • Patent number: 9907609
    Abstract: A medical device for tissue ablation may include a catheter shaft, an expandable member disposed on or coupled to the catheter shaft, and a plurality of elongate electrode assemblies each constructed as a flexible circuit. The expandable member may be configured to shift between an unexpanded configuration and an expanded configuration. The plurality of electrode assemblies may be disposed on an outer surface of the expandable member. Each of the plurality of electrode assemblies may include a temperature sensor aligned with two or more electrodes.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: March 6, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Hong Cao, Travis J. Schauer, Henry H. Lee, Prabodh Mathur, Rabih Nassif, Andres Dandler
  • Patent number: 9901738
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating a patient having congestive heart failure. The method may include positioning an expandable balloon in a renal artery of the patient. The expandable balloon may include a plurality of electrode assemblies. At least some of the electrode assemblies each may include at least two bipolar electrode pairs. The two bipolar electrode pairs may be longitudinally and circumferentially offset from one another. The method may also include expanding the balloon in the renal artery such that at least some of the bipolar electrode pairs are electrically coupled to a wall of the renal artery and energizing at least some of the bipolar electrode pairs so as to therapeutically alter at least one nerve proximate the renal artery to treat the patient's congestive heart failure.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 27, 2018
    Assignee: Vessix Vascular, Inc.
    Inventors: Prabodh Mathur, Shahram Moaddeb
  • Publication number: 20180036072
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating a patient having congestive heart failure. The method may include positioning an expandable balloon in a renal artery of the patient. The expandable balloon may include a plurality of electrode assemblies. At least some of the electrode assemblies each may include at least two bipolar electrode pairs. The two bipolar electrode pairs may be longitudinally and circumferentially offset from one another. The method may also include expanding the balloon in the renal artery such that at least some of the bipolar electrode pairs are electrically coupled to a wall of the renal artery and energizing at least some of the bipolar electrode pairs so as to therapeutically alter at least one nerve proximate the renal artery to treat the patient's congestive heart failure.
    Type: Application
    Filed: July 31, 2017
    Publication date: February 8, 2018
    Inventors: PRABODH MATHUR, SHAHRAM MOADDEB
  • Publication number: 20170348529
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating a patient having congestive heart failure. The method may include positioning an expandable balloon in a renal artery of the patient. The expandable balloon may include a plurality of electrode assemblies. At least some of the electrode assemblies each may include at least two bipolar electrode pairs. The two bipolar electrode pairs may be longitudinally and circumferentially offset from one another. The method may also include expanding the balloon in the renal artery such that at least some of the bipolar electrode pairs are electrically coupled to a wall of the renal artery and energizing at least some of the bipolar electrode pairs so as to therapeutically alter at least one nerve proximate the renal artery to treat the patient's congestive heart failure.
    Type: Application
    Filed: December 30, 2015
    Publication date: December 7, 2017
    Inventors: PRABODH MATHUR, SHAHRAM MOADDEB
  • Patent number: 9827039
    Abstract: Medical devices and methods for making and using the same are disclosed. An medical device may include a medical device for renal nerve ablation. The medical device may include a catheter shaft having a distal region. An expandable balloon may be coupled to the distal region. An electrode assembly may be coupled to the balloon. The electrode assembly may include a first electrode pad including one or more electrodes. The first electrode pad may have a first lead-in edge, a first protruding edge, and a first transition region with a continuously changing curvature disposed between the first lead-in edge and the first protruding edge.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: November 28, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Andres Dandler, Prabodh Mathur
  • Patent number: 9802051
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assessing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG patch adhered to a skin surface of a patient and connected to a lead extending through a percutaneous incision to a target tissue location. The EPG may be a modified version of the IPG used in the permanent system, the EPG may be smaller and/or lighter than the corresponding IPG device. The EPG and a lead extension may be sealed to allow improved patient mobility and reduced risk of infection. The EPG may be compatible with wireless systems used to control and monitor the IPG such that operation and control of the EPG is substantially the same in each system to allow seemless conversion to the permanently implanted system.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: October 31, 2017
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Prabodh Mathur, Rinda Sama, Dennis Schroeder, Eric Schmid, Stuart Karten
  • Publication number: 20170239483
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assesssing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG affixation device that secures the EPG to the patient when connected to a lead extending through a percutaneous incission to a target tissue location, while allowing for ready removal of the EPG for charging or bathing. In another aspect, the system includes an EPG provided with a multi-purpose connector rectacle through which the EPG can deliver neurostimulation therapy to an implanted lead or the EPG can be charged. In yet another aspect, the EPG can include a multi-purpose connector receptacle that is alternatingly connectable with a plurality of differing connector to faciltiate differing types of therapies with one or more neurostimulation devices, ground patches or various other devices, such as charging or testing devices.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 24, 2017
    Inventors: Prabodh Mathur, Dennis Schroeder, John Woock
  • Publication number: 20170231694
    Abstract: A catheter and catheter system can use energy tailored for remodeling and/or removal of target material proximate to a body lumen, often of stenotic material or tissue in the luminal wall of a blood vessel of a patient. An elongate flexible catheter body with a radially expendable structure may have a plurality of electrodes or other electrosurgical energy delivery surfaces to radically engage the luminal wall when the structure expands. Feedback using one or parameters of voltage, current, power, temperature, impedance magnitude, impedance phase angle, and frequency may be used to selectively control the delivery of energy.
    Type: Application
    Filed: May 3, 2017
    Publication date: August 17, 2017
    Inventors: Prabodh Mathur, Meital Mazor, Dolores Perez
  • Patent number: 9713730
    Abstract: A catheter and catheter system can use energy tailored for remodeling and/or removal of target material proximate to a body lumen, often of stenotic material or tissue in the luminal wall of a blood vessel of a patient. An elongate flexible catheter body with a radially expandable structure may have a plurality of electrodes or other electrosurgical energy delivery surfaces to radially engage the luminal wall when the structure expands. Feedback using one or parameters of voltage, current, power, temperature, impedance magnitude, impedance phase angle, and frequency may be used to selectively control the delivery of energy.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 25, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Prabodh Mathur, Meital Mazor, Dolores Perez
  • Publication number: 20170135757
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating tissue near a body passageway using an apparatus including a catheter having a plurality of electrodes, a radio-frequency energy generator, and a controller coupling the energy generator to the plurality of electrodes and configured to selectively energize the electrodes. The method may include using the apparatus to subject the tissue near the body passageway to a plurality of energy treatment cycles. The treatment cycle may include determining desired voltages for at least a subset of the electrodes for maintaining a predetermined target temperature profile proximate the subset of electrodes, setting an output voltage of the energy generator to correspond to the desired voltage determined for one of the electrodes, and energizing at least some of the electrodes at the output voltage to deliver energy to the body passageway.
    Type: Application
    Filed: December 20, 2016
    Publication date: May 18, 2017
    Inventor: Prabodh Mathur
  • Patent number: 9592386
    Abstract: Medical devices and methods for making and using the same are disclosed. An example device may include an expandable balloon including an outer surface. At least one flexible circuit may be mounted on the outer surface of the expandable balloon. The at least one flexible circuit may include a first insulating layer, at least one heat sensing device positioned at least partially within the first insulating layer, a conductive layer above the first insulating layer, at least a portion of which is electrically coupled to the heat sensing device, a second insulating layer above the conductive layer, and at least one electrode associated with the conductive layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 14, 2017
    Assignee: Vessix Vascular, Inc.
    Inventors: Prabodh Mathur, Rabih Nassif, Henry H. Lee, Andres Dandler, Joseluis Espinosa
  • Patent number: 9566114
    Abstract: Medical devices and methods for making and using the same are disclosed. An example medical device may include a catheter shaft. An expandable member may be coupled to the catheter shaft. A plurality of flexible electrode assemblies may be coupled to the expandable member. A control unit may be coupled to the electrode assemblies. The control unit may be configured to energize the electrode assemblies for approximately 10 seconds to less than approximately 1 minute.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: February 14, 2017
    Assignee: Vessix Vascular, Inc.
    Inventor: Prabodh Mathur
  • Publication number: 20170000560
    Abstract: Medical devices and methods for making and using the same are disclosed. An example device may include an expandable balloon including an outer surface. At least one flexible circuit may be mounted on the outer surface of the expandable balloon. The at least one flexible circuit may include a first insulating layer, at least one heat sensing device positioned at least partially within the first insulating layer, a conductive layer above the first insulating layer, at least a portion of which is electrically coupled to the heat sensing device, a second insulating layer above the conductive layer, and at least one electrode associated with the conductive layer.
    Type: Application
    Filed: May 3, 2016
    Publication date: January 5, 2017
    Inventors: PRABODH MATHUR, RABIH NASSIF, Lee Henry, Andres Dandler, Joseluis Espinosa
  • Patent number: 9402684
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating a patient having congestive heart failure. The method may include positioning an expandable balloon in a renal artery of the patient. The expandable balloon may include a plurality of electrode assemblies. At least some of the electrode assemblies each may include at least two bipolar electrode pairs. The two bipolar electrode pairs may be longitudinally and circumferentially offset from one another. The method may also include expanding the balloon in the renal artery such that at least some of the bipolar electrode pairs are electrically coupled to a wall of the renal artery and energizing at least some of the bipolar electrode pairs so as to therapeutically alter at least one nerve proximate the renal artery to treat the patient's congestive heart failure.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: August 2, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Prabodh Mathur, Shahram Moaddeb
  • Publication number: 20160161540
    Abstract: Medical devices and methods for making and using the same are disclosed. An example medical device may include a control unit for determining an electrical leakage between a first electrode pad and a second electrode pad of an in vivo medical device. The first electrode pad may be spaced from the second electrode pad. The first electrode pad may have an active electrode and a spaced ground electrode. The second electrode pad may have an active electrode and a ground electrode. The ground electrode of the first electrode pad may be electrically connected to the ground electrode of the second electrode pad.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 9, 2016
    Inventor: Prabodh Mathur
  • Publication number: 20160106984
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating a patient having congestive heart failure. The method may include positioning an expandable balloon in a renal artery of the patient. The expandable balloon may include a plurality of electrode assemblies. At least some of the electrode assemblies each may include at least two bipolar electrode pairs. The two bipolar electrode pairs may be longitudinally and circumferentially offset from one another. The method may also include expanding the balloon in the renal artery such that at least some of the bipolar electrode pairs are electrically coupled to a wall of the renal artery and energizing at least some of the bipolar electrode pairs so as to therapeutically alter at least one nerve proximate the renal artery to treat the patient's congestive heart failure.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 21, 2016
    Inventors: PRABODH MATHUR, RABIH NASSIF, DOLORES PEREZ, SHAHRAM MOADDEB