Patents by Inventor Pushkar Tandon

Pushkar Tandon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210347676
    Abstract: A method of processing an optical fiber includes drawing the optical fiber from an optical fiber preform within a draw furnace, the optical fiber extending from the draw furnace along a process pathway, the optical fiber comprising at least one halogen-doped core; and drawing the optical fiber through at least one slow cooling device positioned downstream from the draw furnace at a draw speed. The at least one slow cooling device exposes the optical fiber to a slow cooling device process temperature greater than or equal to 800° C. and less than or equal to 1600° C. The draw speed is such that the optical fiber has a residence time of at least 0.1 s in the at least one slow cooling device. An optical fiber made by such a process is also disclosed.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 11, 2021
    Inventors: Steven Bruce Dawes, Pushkar Tandon
  • Patent number: 11149613
    Abstract: Exhaust gas treatment articles and methods of manufacturing the same are disclosed herein. An exhaust gas treatment article includes a porous ceramic honeycomb body with multiple channel walls defining cell channels that extend in an axial direction and an outer peripheral surface that extends in the axial direction. The exhaust gas treatment article further includes a metal layer that surrounds the porous ceramic honeycomb body and that is in direct contact with at least a portion of the outer peripheral surface of the porous ceramic honeycomb body. The metal layer includes a joint. The exhaust gas treatment article includes a shim that is located under the joint and that is in direct contact with at least a portion of the outer peripheral surface of the porous ceramic honeycomb body.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Rajesh Yogesh Bhargava, Dana Craig Bookbinder, Curtis Richard Cowles, Jacob George, Jason Thomas Harris, Seth Thomas Nickerson, Pushkar Tandon
  • Patent number: 11148089
    Abstract: A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Suhao He, Achim Karl-Erich Heibel, Kenneth Richard Miller, Pushkar Tandon, David John Thompson
  • Patent number: 11150403
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Publication number: 20210294027
    Abstract: A multicore optical fiber is provided that includes a first core with silica glass doped with chlorine and/or an alkali metal, a first inner cladding surrounding the first core, and a first outer cladding surrounding the first inner cladding and having a first trench region having a volume of about 30%?-micron2 or greater. The multicore optical fiber also includes a second core with silica glass doped with chlorine and/or an alkali metal, a second inner cladding surrounding the second core, and a second outer cladding surrounding the second inner cladding and having a second trench region having a volume of about 30%?-micron2 or greater. Additionally, a common cladding surrounds the first core and the second core, and the first core and the second core each have an effective area at 1550 nm of about 100 micron2 or less.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 23, 2021
    Inventors: Kevin Wallace Bennett, Snigdharaj Kumar Mishra, Pushkar Tandon, Aramais Robert Zakharian
  • Publication number: 20210294029
    Abstract: An optical fiber is provided that includes a core region and a cladding region. The core region is formed of silica glass doped with chlorine and/or an alkali metal. The cladding region surrounds the core region and includes an inner cladding directly adjacent to the core region, an outer cladding surrounding the inner cladding, and a trench region disposed between the inner cladding and the outer cladding in a radial direction. The trench region has a volume of about 30% ?-micron2 or greater. Additionally, the optical fiber has an effective area at 1550 nm of about 100 micron2 or less.
    Type: Application
    Filed: February 25, 2021
    Publication date: September 23, 2021
    Inventors: Scott Robertson Bickham, Sergejs Makovejs, Pushkar Tandon, Aramais Robert Zakharian
  • Patent number: 11125937
    Abstract: An optical fiber with low attenuation and methods of making same are disclosed. The optical fiber has a core, an inner cladding surround the core, and an outer cladding surrounding the inner cladding. The outer cladding is chlorine-doped such that the relative refractive index varies as a function of radius. The radially varying relative refractive index profile of the outer cladding reduces excess stress in the core and inner cladding, which helps lower fiber attenuation while also reducing macrobend and microbend loss. A process of fabricating the optical fiber includes doping an overclad soot layer of a soot preform with chlorine and then removing a portion of the chlorine dopant from an outermost region of the overclad soot layer. The soot preform with the modified chlorine dopant profile is then sintered to form a glass preform, which can then be used for drawing the optical fiber.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 21, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Paul Andrew Chludzinski, Brian Lee Harper, Ming-Jun Li, Snigdharaj Kumar Mishra, Sonya Marie Raney, Pushkar Tandon
  • Patent number: 11125938
    Abstract: An optical fiber includes (i) a chlorine doped silica based core having a core alpha (Core?)?4, a radius r1, and a maximum refractive index delta ?1max % and (ii) a cladding surrounding the core. The cladding surrounding the core includes a) a first inner cladding region adjacent to and in contact with the core and having a refractive index delta ?2, a radius r2, and a minimum refractive index delta ?2min such that ?2min<?1max, b) a second inner cladding adjacent to and in contact with the first inner cladding having a refractive index ?3, a radius r3, and a minimum refractive index delta ?3min such that ?3min<?2, and c) an outer cladding region surrounding the second inner cladding region and having a refractive index ?5, a radius rmax, and a minimum refractive index delta ?3min such that ?3min<?2.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: September 21, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 11119270
    Abstract: The present description provides reduced-diameter multimode optical fibers. The optical fibers include a reduced-diameter glass fiber and/or reduced-thickness coatings. The overall diameter of the optical fibers is less than 210 ?m and examples with diameters less than 160 ?m are presented. Puncture resistant secondary coatings enable thinning of the secondary coating without compromising protection of the glass fiber. The optical fibers are suitable for data center applications and features high modal bandwidth, low attenuation, low microbending sensitivity, and puncture resistance in a compact form factor.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: September 14, 2021
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Yangbin Chen, Ching-Kee Chien, Ming-Jun Li, Pushkar Tandon, Ruchi Tandon
  • Patent number: 11117124
    Abstract: A honeycomb body having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. A highly porous layer is disposed on one or more of the wall surfaces of the honeycomb body. The highly porous layer has a porosity greater than 90%, and has an average thickness of greater than or equal to 0.5 ?m and less than or equal to 10 ?m. A method of making a honeycomb body includes depositing a layer precursor on a ceramic honeycomb body and binding the layer precursor to the ceramic honeycomb body to form the highly porous layer.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 14, 2021
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210278602
    Abstract: A fiber optic connector that includes a connector body comprising a ferrule retaining portion, a pusher engagement portion and a body cable passage extending through the pusher engagement portion and the ferrule retaining portion. The connector includes a ferrule assembly structurally configured to be retained by the ferrule retaining portion with an optical fiber bore of the ferrule assembly in alignment with the body cable passage. The connector includes a pusher structurally configured to axially engage the pusher engagement portion with a pusher cable passage in alignment with the body cable passage, and a seal component with superabsorbent properties.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Dana Craig Bookbinder, Michael De Jong, Konrad Jan Koziel, Claudio Mazzali, Pushkar Tandon, Ruchi Sarda Tandon
  • Publication number: 20210269352
    Abstract: Optical fibers having low fictive temperature and methods of making such fibers are described. Management of the cooling rate of an optical fiber during fiber draw permits control over the fictive temperature of the fiber. Non-monotonic cooling rates are shown to promote reductions in fiber fictive temperature. The non-monotonic cooling includes slower cooling rates in upstream portions of the process pathway and faster cooling rates in downstream portions of the process pathway. Reduction in fiber fictive temperature is achieved by controlling the ambient temperature of the fiber to slow the cooling rate of the fiber in upstream portions of the process pathway that correspond to the fiber temperature regime in which the fiber viscosity is sufficiently low to permit efficient structural relaxation. Increases in cooling rate in downstream portions of the process pathway permit adjustment of fiber temperature as needed to meet entrance temperature requirements of downstream processing units.
    Type: Application
    Filed: February 23, 2021
    Publication date: September 2, 2021
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Publication number: 20210263254
    Abstract: An optical cable and method for forming an optical cable is provided. The cable includes a cable jacket including an inner surface defining a channel and an outer surface. The cable includes a seam within the cable jacket that couples together opposing longitudinal edges of a wrapped thermoplastic sheet which forms the cable jacket and maintains the cable jacket in the wrapped configuration around the plurality of optical fibers. The method includes forming an outer cable jacket by wrapping a sheet of thermoplastic material around a plurality of optical core elements. The method includes laser welding together portions of thermoplastic material of opposing longitudinal edges of the wrapped sheet such that a seam is formed holding the sheet of thermoplastic material in the wrapped configuration around the core elements.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Inventors: Warren Welborn McAlpine, Eric James Paulus, Pushkar Tandon
  • Publication number: 20210263215
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low attenuation. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide low-diameter fibers without sacrificing protection. The primary coating has high tear strength and is resistant to damage caused by mechanical force. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 190 ?m.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon, Ruchi Sarda Tandon
  • Publication number: 20210253469
    Abstract: A system for processing an optical fiber includes: a draw furnace, said draw furnace containing an optical fiber preform; a bare optical fiber drawn from said optical fiber preform, said bare optical fiber extending from said draw furnace along a process pathway; and a slow cooling device operatively coupled to and downstream from said draw furnace, said slow cooling device exposing said bare optical fiber to a slow cooling device process temperature in the range from 1000° C. to 1400° C., wherein the bare optical fiber passes through the slow cooling device at least two times.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: Bruce Warren Reding, Pushkar Tandon
  • Publication number: 20210239900
    Abstract: The wideband multimode co-doped optical fiber has a silica core co-doped with GeO2 and Al2O3. The GeO2 concentration is maximum at the fiber centerline and monotonically decreases radially out to the core radius. The Al2O3 concentration is minimum at the centerline and monotonically increases radially out to maximum concentration at the core radius. The cladding has an inner cladding region of relative refractive index ?2, an intermediate cladding region having a relative refractive index ?3, and an outer cladding region having a relative refractive index ?4, wherein ?3<?2, ?4. The optical fiber has a bandwidth BW?5 GHz·km with a peak wavelength ?P within a wavelength range of 800 nm to 1200 nm and over a wavelength band ?? of at least 100 nm.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 5, 2021
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 11072560
    Abstract: A method of preparing an optical preform, comprises the steps of: positioning an optical preform comprising silica within a cavity of a furnace; passing an etchant gas into the furnace and at least one of through an open channel defined in the optical preform and around the optical preform; and passing a neutralizing gas into the cavity of the furnace, the neutralizing gas configured to neutralize the etchant gas.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: July 27, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Pushkar Tandon
  • Publication number: 20210223469
    Abstract: The optical fiber disclosed has a glass fiber including a core and a cladding. The core comprises silica glass doped with chlorine and having an outer radius r1 between 3.0 microns and 10.0 microns. The cladding has an outer radius r4 not less than 50.0 microns. A primary coating surrounding the cladding has a thickness (r5?r4) between 5.0 microns and 20.0 microns, and an in situ modulus less than 0.30 MPa. A secondary coating surrounding the primary coating has a thickness (r6?r5) between 8.0 microns and 30.0 microns, a Young's modulus greater than 1500 MPa, and a normalized puncture load greater than 3.6×10?3 g/micron2. The optical fiber has a 22-meter cable cutoff wavelength less than 1530 nm, an attenuation at 1550 nm of less than 0.17 dB/km, and a bending loss at 1550 nm of less than 3.0 dB/turn.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 22, 2021
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon, Ruchi Sarda Tandon
  • Patent number: 11067744
    Abstract: A single mode optical fiber, comprising: (i) a silica based core having a step refractive index profile with an alpha of greater than 10, a relative refractive index ?1MAX, and an outer radius r1, wherein 6.25 microns>r1?4.75 microns, the core further comprising Cl, Ge, or a combination thereof; (ii) a first cladding region in contact with and surrounding the core, the first cladding region having a relative refractive index ?2MIN, an inner radius r1, and an outer radius r2, wherein r2<20 microns; and (iii) an outer cladding region surrounding the first cladding region, the outer cladding region having a relative refractive index ?3. The fiber<1300 nm, a 22m cable cutoff wavelength<1260 nm; and a bend loss<0.005 dB/turn when the optical fiber is bent around a 30 mm mandrel; <0.5 dB/turn when the fiber is bent around a 20 mm mandrel.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 20, 2021
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Publication number: 20210214266
    Abstract: Disclosed herein are methods for forming an optical fiber preform using organic silica and germania precursors. The method includes depositing soot composed of germanium dioxide and silica on a substrate, removing the substrate, conducting a dehydration step and one or more heating steps under an oxygen-containing atmosphere to form the preform. Also disclosed are optical fibers drawn from the preforms produced herein.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 15, 2021
    Inventors: Curtis Robert Fekety, Richard Michael Fiacco, Ming-Jun Li, Craig Daniel Nie, Jeffery Scott Stone, Pushkar Tandon