Patents by Inventor Qijun Xiao

Qijun Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102496
    Abstract: A bottom cylinder for a high-temperature and high-pressure environment simulator of a high-fidelity corer is provided. The bottom cylinder includes a cylinder barrel. The bottom of the cylinder barrel is provided with a cylinder base. The piston is provided inside the cylinder barrel and divides an inner cavity of the cylinder barrel into a rodless cavity and a rod cavity. The piston is provided with a piston rod. The outer wall of the cylinder barrel is provided with an oil inlet hole communicated with the rodless cavity, an oil outlet hole communicated with the rod cavity, and a reserved hole. The lower end surface of the piston is provided with a first buffer ring, and the upper surface of the cylinder base is provided with a second buffer ring mated with the first buffer ring. The bottom cylinder is applied to the simulator for oil and gas resource exploitation.
    Type: Application
    Filed: August 22, 2022
    Publication date: March 28, 2024
    Applicant: SICHUAN UNIVERSITY
    Inventors: Ru ZHANG, Zetian ZHANG, Zhilong ZHANG, Li REN, Chendi LOU, Kun XIAO, Anlin ZHANG, Qijun HAO, Lanbin ZHANG
  • Publication number: 20240004135
    Abstract: A method for window stripping ribbonized optical fibers is provided including applying a tensile force to the ribbonized optical fibers, applying heated air flow to the ribbonized optical fibers, such that a coating of the ribbonized optical fibers softens or detaches from the optical fibers, and stripping the coating from the optical fibers using at plurality of blades, which do not contact the optical fibers.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Xingzhong Wang, Qijun Xiao, Hao Zhang
  • Patent number: 11750316
    Abstract: Disclosed herein is wavelength-division multiplexing (WDM) and demultiplexing with signal entry and exit in a common routing surface to increase channel density. In particular, disclosed is a WDM assembly including a plurality of common ports and a plurality of channel sets having one or more channel ports. The WDM assembly includes a first routing surface with a first WDM passband and a second routing surface offset from the first routing surface. The second routing surface is configured to reflect at least one signal passed through the first routing surface back through the first routing surface at a laterally different location. Optical signal paths of at least a portion of the common ports are parallel to and offset from one another. In certain embodiments, such a configuration may increase channel density and decrease a form factor (e.g., footprint).
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: September 5, 2023
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventor: Qijun Xiao
  • Patent number: 11460641
    Abstract: In various embodiments, free-space optical collimator and multi-channel wavelength division multiplexers including free-space optical collimators are provided. In one embodiment, for example, a free-space optical collimator includes a base having a length, a generally flat bottom surface and a top surface. A groove is disposed along the top surface of the base extending through the length of the base. A lens is disposed within the groove of the base and a fiber optic pigtail is disposed generally adjacent to a focal point of the lens. The lens and fiber optic pigtail are aligned within the groove to reduce an off-angle offset of an optical light signal propagating through the free-space optical collimator. In other embodiments, a process of producing a free-space optical collimator is also provided.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 4, 2022
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Yu Huang, Dong Gui, Qijun Xiao, Yao Li, Andy Zhou
  • Patent number: 11320594
    Abstract: An optical system comprising: an optical assembly having a first optical surface and a rear optical surface, said optical assembly comprising at least three optical elements; an optical fiber comprising a core portion with a mode field diameter (MFD) expanded region optically coupled to the rear optical surface of the optical assembly, the optical fiber comprising a core region doped with chlorine in a concentration greater than 0.5 wt %, wherein the MFD expanded region is less than 5 cm in length, and has MFD at the fiber end coupled to the optical assembly that is a least 20% greater than the MFD at other end of the optical fiber; an optical signal source coupled to first optical surface of the optical assembly, such that the optical signal provided by the optical signal source is routed along an optical path formed by the optical assembly to the mode field diameter expanded region of said optical fiber.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 3, 2022
    Assignee: Corning Incorporated
    Inventors: Dong Gui, Pushkar Tandon, Qijun Xiao
  • Publication number: 20220038201
    Abstract: Disclosed herein is wavelength-division multiplexing (WDM) and demultiplexing with signal entry and exit in a common routing surface to increase channel density. In particular, disclosed is a WDM assembly including a plurality of common ports and a plurality of channel sets having one or more channel ports. The WDM assembly includes a first routing surface with a first WDM passband and a second routing surface offset from the first routing surface. The second routing surface is configured to reflect at least one signal passed through the first routing surface back through the first routing surface at a laterally different location. Optical signal paths of at least a portion of the common ports are parallel to and offset from one another. In certain embodiments, such a configuration may increase channel density and decrease a form factor (e.g., footprint).
    Type: Application
    Filed: July 14, 2021
    Publication date: February 3, 2022
    Inventor: Qijun Xiao
  • Patent number: 11005588
    Abstract: Disclosed herein is wavelength-division multiplexing (WDM) and demultiplexing with signal entry and exit in a common routing surface to increase channel density. In particular, disclosed is a WDM assembly including one or more common ports and one or more channel sets, with each channel set including one or more channel ports. The WDM assembly includes a first routing surface with a first WDM passband and a second routing surface offset from the first routing surface. The second routing surface is configured to reflect at least one signal passed through the first routing surface back through the first routing surface at a laterally different location. The offset controls a pitch between reflected signals, while maintaining a sufficiently large surface area to ensure proper signal performance and/or structural integrity. Controlling pitch by offset provides higher density routing with smaller channel pitches and/or more channels in a decreased volume.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 11, 2021
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventor: Qijun Xiao
  • Publication number: 20210135775
    Abstract: Disclosed herein is wavelength-division multiplexing (WDM) and demultiplexing with signal entry and exit in a common routing surface to increase channel density. In particular, disclosed is a WDM assembly including one or more common ports and one or more channel sets, with each channel set including one or more channel ports. The WDM assembly includes a first routing surface with a first WDM passband and a second routing surface offset from the first routing surface. The second routing surface is configured to reflect at least one signal passed through the first routing surface back through the first routing surface at a laterally different location. The offset controls a pitch between reflected signals, while maintaining a sufficiently large surface area to ensure proper signal performance and/or structural integrity. Controlling pitch by offset provides higher density routing with smaller channel pitches and/or more channels in a decreased volume.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventor: Qijun Xiao
  • Publication number: 20210072462
    Abstract: An optical system comprising: an optical assembly having a first optical surface and a rear optical surface, said optical assembly comprising at least three optical elements; an optical fiber comprising a core portion with a mode field diameter (MFD) expanded region optically coupled to the rear optical surface of the optical assembly, the optical fiber comprising a core region doped with chlorine in a concentration greater than 0.5 wt %, wherein the MFD expanded region is less than 5 cm in length, and has MFD at the fiber end coupled to the optical assembly that is a least 20% greater than the MFD at other end of the optical fiber; an optical signal source coupled to first optical surface of the optical assembly, such that the optical signal provided by the optical signal source is routed along an optical path formed by the optical assembly to the mode field diameter expanded region of said optical fiber.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 11, 2021
    Inventors: Dong Gui, Pushkar Tandon, Qijun Xiao
  • Publication number: 20200379182
    Abstract: The precision TFF POSA is formed by pressing a TFF glass rod array into a top surface of a master glass block to flatten the otherwise curved TFFs formed using conventional TFF deposition processes on glass. The TFF glass rod array is secured to the master glass block with a securing material to form a fabrication structure, which is singulated to form precision TFF POSAs having TFF members with flat TFFs and long TFF member long axes. A fiber interface device is arranged at a back surface of the TFF POSA. Other fiber interface devices having device axes are arranged proximate the TFF members. The device axes are parallel to the TFF member long axes to form a WDM system with a parallel configuration. In this configuration, there is one positionally adjustable fiber interface device for each wavelength channel, which allows for optimizing WDM optical communication in Mux and DeMux directions.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Dong Gui, Qijun Xiao
  • Patent number: 10852482
    Abstract: The precision TFF POSA is formed by pressing a TFF glass rod array into a top surface of a master glass block to flatten the otherwise curved TFFs formed using conventional TFF deposition processes on glass. The TFF glass rod array is secured to the master glass block with a securing material to form a fabrication structure, which is singulated to form precision TFF POSAs having TFF members with flat TFFs and long TFF member long axes. A fiber interface device is arranged at a back surface of the TFF POSA. Other fiber interface devices having device axes are arranged proximate the TFF members. The device axes are parallel to the TFF member long axes to form a WDM system with a parallel configuration. In this configuration, there is one positionally adjustable fiber interface device for each wavelength channel, which allows for optimizing WDM optical communication in Mux and DeMux directions.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: December 1, 2020
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Dong Gui, Qijun Xiao
  • Patent number: 10551569
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with multiple collimator sets is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including at least one optical signal router, at least one WDM filter, and a first and second WDM collimator sets. The first WDM collimator set includes a first common optical collimator and at least two channel collimators and the second WDM collimator set includes a second common optical collimator and at least two channel collimators. At least a portion of the first WDM collimator set is optically positioned on a first surface of at least one substrate, and at least a portion of the second WDM collimator set is optically positioned on a second surface of the at least one substrate opposite the first surface. The WDM optical core subassembly increases lane density while decreasing size and minimizing complexity by using a plurality of WDM common ports.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: February 4, 2020
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Dong Gui, Zilong Jiang, Qijun Xiao, Andy Fenglei Zhou
  • Patent number: 10469923
    Abstract: Disclosed herein is a routing band-pass filter for routing optical signals between multiple optical channel sets. In particular, disclosed is a wavelength-division multiplexing (WDM) optical assembly including a first WDM filter, a second WDM filter, and a first routing filter. The first and second WDM filter are in communication with first and second sets of channel ports, respectively. The routing filter has a routing passband and forms a primary routing optical path for signals outside the routing passband between the first WDM filter and a common port. The routing filter also forms a secondary routing optical path for signals within the routing passband between the second WDM filter and the common port. The routing band-pass filter increases the number of channel ports in optical communication with a common port while maintaining signal integrity and increasing speed.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 5, 2019
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Andy Fenglei Zhou
  • Publication number: 20190200104
    Abstract: Disclosed herein is a routing band-pass filter for routing optical signals between multiple optical channel sets. In particular, disclosed is a wavelength-division multiplexing (WDM) optical assembly including a first WDM filter, a second WDM filter, and a first routing filter. The first and second WDM filter are in communication with first and second sets of channel ports, respectively. The routing filter has a routing passband and forms a primary routing optical path for signals outside the routing passband between the first WDM filter and a common port. The routing filter also forms a secondary routing optical path for signals within the routing passband between the second WDM filter and the common port. The routing band-pass filter increases the number of channel ports in optical communication with a common port while maintaining signal integrity and increasing speed.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Qijun Xiao, Andy Fenglei Zhou
  • Patent number: 10313045
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with increased lane density is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including an optical signal router for routing an optical signal between a first side and a second side of a substrate. The WDM optical core subassembly further includes a first WDM filter having a first passband and a second WDM filter having a second passband. The WDM optical core subassembly forms a first optical path between a first common port, the first WDM filter, and a first channel port, and to form a second optical path between the second WDM filter, a second common port, and a second channel port. The WDM optical core subassembly increases lane density while decreasing size and complexity by including a plurality of common ports in optical communication with the same plurality of WDM filters.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 4, 2019
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Shudong Xiao, Andy Fenglei Zhou, Dong Gui
  • Patent number: 10288812
    Abstract: Disclosed herein is a fiber optic-to-waveguide coupling assembly with an overlap for edge coupling. The fiber optic-to-waveguide coupling assembly includes a first coupler having a substrate and at least one data fiber, and an interposer with at least one waveguide. A first coupler overlap portion of the substrate is positionable proximate a first interposer overlap portion of the interposer to form a first overlap therebetween to align the at least one data fiber with the at least one waveguide. The substrate and the interposer may each include complementary alignment features to further align the at least one data fiber and the at least one waveguide. The fiber optic-to-waveguide coupling assembly provides simple and accurate alignment with simplified manufacture and assembly.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: May 14, 2019
    Assignee: Corning Incorporated
    Inventors: Alan Frank Evans, Davide Domenico Fortusini, Qijun Xiao
  • Patent number: 10182275
    Abstract: Disclosed herein is wavelength-division multiplexer with an internal optical signal tuned by a mounted signal pitch router. In particular, disclosed is a wavelength-division multiplexing (WDM) optical assembly including an optical signal router, a WDM filter, and a signal pitch router. The WDM filter has a wavelength selective surface positioned proximate the second side of the optical signal router. The signal pitch router has a transmissive surface positioned proximate to a side of the optical signal router, and a second reflective surface opposite the transmissive surface. A depth of the signal pitch router establishes and tunes a pitch of a routing optical path within the optical signal router. This provides for easier, faster, more reliable, and more cost effective manufacturing and assembly of the WDM optical assembly.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 15, 2019
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Andy Fenglei Zhou
  • Publication number: 20180220208
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with multiple collimator sets is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including at least one optical signal router, at least one WDM filter, and a first and second WDM collimator sets. The first WDM collimator set includes a first common optical collimator and at least two channel collimators and the second WDM collimator set includes a second common optical collimator and at least two channel collimators. At least a portion of the first WDM collimator set is optically positioned on a first surface of at least one substrate, and at least a portion of the second WDM collimator set is optically positioned on a second surface of the at least one substrate opposite the first surface. The WDM optical core subassembly increases lane density while decreasing size and minimizing complexity by using a plurality of WDM common ports.
    Type: Application
    Filed: April 7, 2017
    Publication date: August 2, 2018
    Inventors: Dong Gui, Zilong Jiang, Qijun Xiao, Andy Fenglei Zhou
  • Patent number: 10012796
    Abstract: A multiplexer/demultiplexer is provided comprising a capillary filter block, a capillary adhesive, a signal-routing block, and an index-matching adhesive. The capillary adhesive resides in the capillary interstices of the capillary filter block and the index-matching adhesive forms an optical and mechanical interface between the signal-routing block and the capillary filter block. The layer thickness of the index-matching adhesive accommodates for extra-planar surface irregularities in the bonding face of the signal routing block and extra-planar variations along the proximal ends of the component filter blocks of the capillary filter block. The capillary filter block can be formed from a plurality of component filter blocks by dicing multiple component filter blocks from a filter block substrate, placing the component filter blocks adjacent to one another, and using capillary force to draw adhesive between adjacent sidewalls of component filter blocks.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Dong Gui, Andy Zhou
  • Publication number: 20180139520
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with increased lane density is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including an optical signal router for routing an optical signal between a first side and a second side of a substrate. The WDM optical core subassembly further includes a first WDM filter having a first passband and a second WDM filter having a second passband. The WDM optical core subassembly forms a first optical path between a first common port, the first WDM filter, and a first channel port, and to form a second optical path between the second WDM filter, a second common port, and a second channel port. The WDM optical core subassembly increases lane density while decreasing size and complexity by including a plurality of common ports in optical communication with the same plurality of WDM filters.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 17, 2018
    Inventors: Qijun Xiao, Shudong Xiao, Andy Fenglei Zhou, Dong Gui