Patents by Inventor Quanchang Li

Quanchang Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10022700
    Abstract: Methods of preparing organosilica materials, which are a polymer comprising of at least one independent cyclic polyurea monomer of Formula wherein each R1 is a Z1OZ2Z3SiZ4 group, wherein each Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer unit; each Z2 and Z3 independently represent a hydroxyl group, a C1-C4 alkyl group, a C1-C4 alkoxy group or an oxygen atom bonded to a silicon atom of another monomer unit; and each Z4 represents a C1-C8 alkylene group bonded to a nitrogen atom of the cyclic polyurea are provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for gas separation, color removal, etc., are also provided herein.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: July 17, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Lei Zhang, Kiara M. Benitez, Himanshu Gupta, Xiaochun Xu, Scott J. Weigel, Darryl Donald Lacy, Bal Kaul, James William Gleeson, Wenyih Frank Lai, Mobae Afeworki, Simon Christopher Weston, David A. Griffin, Meghan Nines
  • Patent number: 10022701
    Abstract: Methods for coating a substrate with a coating including an adsorbent material and a binder comprising an organosilica material which is a polymer comprising independent units of Formula [Z3Z4SiCH2]3 (I), wherein each Z3 represents a hydroxyl group, a C1-C4 alkoxy group or an oxygen atom bonded to a silicon atom of another unit or an active site on the substrate and each Z4 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C4 alkyl group, an oxygen atom bonded to a silicon atom of another unit or an active site on the substrate are provided. Methods of gas separation are also provided.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: July 17, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Quanchang Li, Randall D. Partridge
  • Publication number: 20180179310
    Abstract: Disclosed herein are spray-dried catalyst compositions including one or more olefin polymerization catalysts and at least one support of an organosilica material, optionally, with at least one activator. The spray-dried catalyst compositions may be used in polymerization processes for the production of polyolefin polymers.
    Type: Application
    Filed: November 9, 2017
    Publication date: June 28, 2018
    Inventors: Matthew W. Holtcamp, Quanchang Li, David C. Calabro, Gerardo J. Majano Sanchez, Machteld M. Mertens, Charles J. Harlan
  • Patent number: 9956541
    Abstract: Methods are provided herein for separating an aromatic compound from a lube base stock by contacting a lube base stock containing an aromatic compound with an organosilica material.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 1, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Scott J. Weigel, Lei Zhang, Quanchang Li, Darryl Donald Lacy, Paul Podsiadlo, David Charles Calabro, Bal Kaul, James William Gleeson
  • Publication number: 20170355822
    Abstract: Organosilica materials made from monomers including at least a source of silica that is reactive to polymerize, optionally in combination with at least one additional cyclic monomer. Methods for making such organosilica materials are also described herein.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: David C. Calabro, Ivy D. Johnson, Quanchang Li, Paul Podsiadlo, Simon C. Weston, Mobae Afeworki
  • Publication number: 20170355823
    Abstract: Methods of identifying precursors for producing high porosity and high surface area organosilica materials are providing herein. Methods of producing organosilica materials and uses thereof are also provided herein.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Brian K. Peterson, David C. Calabro, Quanchang Li, Simon C. Weston, Mobae Afeworki
  • Publication number: 20170354961
    Abstract: Catalysts including at least one microporous material (e.g., zeolite), an organosilica material binder, and at least one catalyst metal are provided herein. Methods of making the catalysts, preferably without surfactants and processes of using the catalysts, e.g., for aromatic hydrogenation, are also provided herein.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Paul Podsiadlo, Quanchang Li, David C. Calabro, Kiara M. Benitez, Machteld M.W. Mertens, Scott J. Weigel, Doron Levin, Randall D. Partridge
  • Publication number: 20170327604
    Abstract: A catalyst system comprising a combination of: 1) an activator; 2) one or more metallocene catalyst compounds; 3) a support comprising an organosilica material, which is a mesoporous organosilica material. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2 SiCh2]3(i), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silic-on atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 salkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 12, 2015
    Publication date: November 16, 2017
    Inventors: Matthew W. HOLTCAMP, Gregory S. DAY, David F. SANDERS, David C. CALABRO, Quanchang LI, Machteld M.W. MERTENS
  • Publication number: 20170320971
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds having at least one nitrogen linkage and at least one oxygen linkage to a transition metal; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include ONNO-type transition metal catalysts, ONYO-Type transition metal catalysts, and/or oxadiazole transition metal catalysts. The organosilica material is a polymer of at least one monomer of Formula [z?0Z2 SiCH2]3(1), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 9, 2017
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA, Charles J. HARLAN, Quanchang LI, Machteld M.W. MERTENS
  • Publication number: 20170320977
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one nitrogen linkage; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include pyridyldiamido transition metal complexes, HN5 compounds, and bis(imino)pyridyl complexes. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3(1), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 9, 2017
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA, Charles J. HARLAN, Quanchang LI, Machteld M.W. MERTENS
  • Publication number: 20170313791
    Abstract: A photovoltaic module comprising: (a) a photovoltaic laminate including: two or more electrically conducting dements extending through the photovoltaic laminate so that power is moved from one photovoltaic module towards another photovoltaic module or towards an inverter; and (b) one or more connectors connected to each of the two or more electrically conducting elements by a connection joint, each of the one or more connectors include: two or more opposing terminals that each are connected to and extend from one of the two or more electrically conducing elements; wherein a dielectric space is located between the two or more opposing terminals and the dielectric space blocks material used to form a connection joint from passing from a first terminal to a second terminal, the material from the connection joint cools before the material passes from one terminal to a second terminal, the material fails to travel from the first terminal to the second terminal, or a combination thereof.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 2, 2017
    Inventors: Machteld M.W. MERTENS, Jo Ann M. CANICH, Suzzy C.H. HO, Quanchang LI
  • Publication number: 20170306068
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one oxygen linkage, such as a phenoxide transition metal compound; 2) a support comprising an organosilica material, which may be a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include biphenyl phenol catalysts (BPP). The organosilica material may be a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3 (I), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 11, 2015
    Publication date: October 26, 2017
    Inventors: Matthew W. HOLTCAMP, Charles J. HARLAN, Quanchang LI, Machteld M.W. MERTENS
  • Patent number: 9713788
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios>0.5:1 (approaching 1:1) may be achieved.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 25, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David Charles Calabro, Lisa Saunders Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis George Peiffer, Quanchang Li
  • Patent number: 9610533
    Abstract: An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: April 4, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Patent number: 9533248
    Abstract: An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: January 3, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Patent number: 9533249
    Abstract: An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: January 3, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Publication number: 20160229959
    Abstract: Organosilica materials, which are a polymer of at least one independent monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer and at least one other trivalent metal oxide monomer are provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for catalysis etc., are also provided herein.
    Type: Application
    Filed: December 11, 2015
    Publication date: August 11, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Quanchang Li, David Charles Calabro, Mobae Afeworki, Simon Christopher Weston, Machteld Maria Wilfried Mertens, Tilman Wolfram Beutel, Wenyih Frank Lai, Paul Podsiadlo, Jean Willem Lodewijk Beeckman
  • Publication number: 20160167015
    Abstract: Adsorbent materials including a porous material support and about 0.5 wt. % to about 30 wt. % of a Group 8 metal ion are provide herein. Methods of making the adsorbent material and processes of using the adsorbent material, e.g., for heteroatom species separation, are also provided herein.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Paul PODSIADLO, Jianxin WU, Kiara M. BENITEZ, Quanchang LI, David Charles CALABRO
  • Publication number: 20160167032
    Abstract: Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Jean Willem Lodewijk Beeckman, Lei Zhang, Kiara M. Benitez, Matthew Scott Ide, Stephen John McCarthy, Mobae Afeworki, Simon Christopher Weston
  • Publication number: 20160168171
    Abstract: Methods of preparing organosilica materials, which is a polymer comprising independent siloxane units of Formula [Z3Z4SiCH2]3 (I), wherein each Z3 represents a hydroxyl group, a C1-C4 alkoxy group or an oxygen atom bonded to a silicon atom of another siloxane unit and each Z4 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C4 alkyl group, or an oxygen atom bonded to a silicon atom of another siloxane, in the absence of a structure directing agent and/or porogen are provided herein. Processes of using the organosilica materials, e.g., for gas separation, etc., are also provided herein.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Quanchang Li, Mobae Afeworki, David Charles Calabro, David Griffin, Meghan Nines, Simon Christopher Weston, Paul Podsiadlo, Jean Willem Lodewijk Beeckman, Preeti Kamakoti, Kanmi Mao, Matu J. Shah