Patents by Inventor Rafael Carbunaru

Rafael Carbunaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9358399
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 7, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Publication number: 20160151622
    Abstract: Architectures for implantable stimulators having N electrodes are disclosed. The architectures contains X current sources, or DACs. In a single anode/multiple cathode design, one of the electrodes is designated as the anode, and up to X of the electrodes can be designated as cathodes and independently controlled by one of the X DACs, allowing complex patient therapy and current steering between electrodes. The design uses at least X decoupling capacitors: X capacitors in the X cathode paths, or one in the anode path and X?1 in the X cathode paths. In a multiple anode/multiple cathode design having X DACs, a total of X?1 decoupling capacitors are needed. Because the number of DACs X can typically be much less than the total number of electrodes (N), these architectures minimize the number of decoupling capacitors which saves space, and ensures no DC current injection even during current steering.
    Type: Application
    Filed: February 9, 2016
    Publication date: June 2, 2016
    Inventors: Jordi Parramon, Rafael Carbunaru
  • Patent number: 9352156
    Abstract: Neurostimulation systems and methods for providing therapy to a patient suffering from a symptom of a disease that latently responds to electrical stimulation therapy are provided. First electrical stimulation energy is conveyed to or from a tissue region of the patient in accordance with a first set of stimulation parameters, thereby affecting the symptom. A predetermined period of time estimated for the symptom to resolve in response to electrical stimulation therapy is allowed to elapse. Second electrical stimulation energy is conveyed to or from the tissue region in accordance with a second set of stimulation parameters different from the first set of stimulation parameters.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 31, 2016
    Assignee: Boston Scientific Neurmodulation Corporation
    Inventors: Courtney Lane, Rafael Carbunaru, David K. L. Peterson, Andrew DiGiore
  • Patent number: 9345883
    Abstract: A rechargeable-battery Implantable Medical Device (IMD) is disclosed including a primary battery which can be used as a back up to power critical loads in the IMD when the rechargeable battery is undervoltage and other non-critical loads are thus decoupled from the rechargeable battery. A rechargeable battery undervoltage detector provides at least one rechargeable battery undervoltage control signal to a power supply selector, which is used to set the power supply for the critical loads either to the rechargeable battery voltage when the rechargeable battery is not undervoltage, or to the primary battery voltage when the rechargeable battery is undervoltage. Circuitry for detecting the rechargeable battery undervoltage condition may be included as part of the critical loads, and so the undervoltage control signal(s) is reliably generated in a manner to additionally decouple the rechargeable battery from the load to prevent further rechargeable battery depletion.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: May 24, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Publication number: 20160136443
    Abstract: A system for storing stimulation programs or sets of stimulation parameters includes at least one memory; at least one of i) multiple stimulation programs or ii) a multiple sets of stimulation parameters stored on the at least one memory from multiple different devices remote from the system and used to stimulate different patients; at least one processor coupled to the at least one memory to retrieve the stored stimulation programs or sets of stimulation parameters from the at least one memory when requested and to store additional stimulation programs or sets of stimulation parameters on the at least one memory; and a communications arrangement coupled to the at least one processor to deliver the stored stimulation programs or sets of stimulation parameters to external device and to receive additional stimulation programs and sets of stimulation parameters from external devices.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Sarvani Grandhe, Sridhar Kothandaraman, Soroush Massoumi, Rafael Carbunaru, Dennis Zottola, Bradley Lawrence Hershey
  • Patent number: 9339655
    Abstract: A neuromodulation system and method of providing therapy to a patient. A plurality of individual electrical pulse trains is generated at a respective plurality of individual pulse rates. The plurality of individual electrical pulse trains are concurrently respectively from a plurality of electrodes to a common electrode via tissue of the patient, thereby creating a combined electrical pulse train having an average pulse rate equal to or greater than 1 KHz.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Rafael Carbunaru
  • Patent number: 9339659
    Abstract: An external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest (hot) and lowest (cold) coupling to the external charger. The intensity of the magnetic charging field is optimized for the cold implant to ensure that it is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant to ensure that it does not exceed a power dissipation limit. As a result, charging is optimized to be fast for all of the implants, while still safe from a tissue heating perspective.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9327069
    Abstract: Methods of treating a medical condition include applying at least one stimulus to a stimulation site within the brain of a patient with an implanted stimulator in accordance with one or more stimulation parameters. The at least one stimulus is configured to promote neural remodeling within the brain of the patient. Systems for treating a medical condition include an implantable stimulator configured to apply at least one stimulus to a stimulation site within the brain of a patient in accordance with one or more stimulation parameters. The at least one stimulus is configured to promote neural remodeling within the brain of the patient.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: May 3, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Allison M. Foster, Rafael Carbunaru, Kristen N. Jaax, Todd K. Whitehurst
  • Publication number: 20160101291
    Abstract: Apparatus and methods for charging an implanted medical device.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 14, 2016
    Inventors: Kristen Jaax, Rafael Carbunaru, Mun Pook Lui, Todd K. Whitehurst, Andrew DiGiore, Brett Daniel Schleicher, Gregory Baldwin, Michael A. Moffitt, Jeffery Van Funderburk, James C. Makous
  • Patent number: 9308364
    Abstract: A lead assembly includes an implantable lead. Electrodes are disposed along a distal end of the lead in an electrode array. Terminals are disposed along a proximal end of the lead in a proximal-most terminal array and a medial terminal array. A terminal extension electrically couples to the medial terminal array. A port is defined in a connector at a first end of the terminal extension. The port has a first end and an opposing second end and forms a continuous passageway therebetween. The port receives the medial terminal array. A contact array includes connector contacts that are disposed within the port and that couple electrically with a terminal array disposed along a second end of the terminal extension. The contact array couples electrically with terminals of the medial terminal array of the lead when the medial terminal array is received by the port.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: April 12, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Jacob Matthew Muhleman, Rafael Carbunaru
  • Patent number: 9289610
    Abstract: A method for configuring stimulation pulses in an implantable stimulator device having a plurality of electrodes is disclosed, which method is particularly useful in adjusting the electrodes by current steering during initialization of the device. In one aspect, a set of ideal pulses for patient therapy is determined, in which at least two of the ideal pulses are of the same polarity and are intended to be simultaneous applied to corresponding electrodes on the implantable stimulator device during an initial duration. These pulses are reconstructed into fractionalized pulses, each comprised of pulse portions. The fractionalized pulses are applied to the corresponding electrodes on the device during a final duration, but the pulse portions of the fractionalized pulses are not simultaneously applied during the final duration.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 22, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Rafael Carbunaru, Matt I. Haller
  • Patent number: 9283394
    Abstract: Miniature implantable stimulators (i.e., microstimulators) are capable of producing unidirectionally propagating action potentials (UPAPs). The methods and configurations described may, for instance, arrest action potentials traveling in one direction, arrest action potentials of small diameters nerve fibers, arrest action potentials of large diameter nerve fibers. These methods and systems may limit side effects of bidirectional and/or less targeted stimulation.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: March 15, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Todd K. Whitehurst, Rafael Carbunaru, James P. McGivern, Matthew I. Haller, Tom Xiaohai He, Kerry Bradley, Janusz A. Kuzma
  • Publication number: 20160022995
    Abstract: An electrical stimulation system includes an implantable control module for implantation in a patient's body and having an antenna and a processor coupled to the antenna. The control module provides electrical stimulation signals to an electrical stimulation lead coupled to the implantable control module for stimulation of patient tissue. The system also includes an external programming unit to communicate with the processor of the implantable control module using the antenna and to provide or update stimulation parameters for production of the electrical stimulation signals. The system may also include a patient interface unit to communicate with the external programming unit, the control module, or both. The patient interface unit is configured and arranged to permit a patient to alter one or more of the stimulation parameters within pre-set limits. Alternatively or additionally, the system may also include a database to receive stimulation data from the external programming unit.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 28, 2016
    Inventors: Sridhar Kothandaraman, Rafael Carbunaru, Dennis Zottola, Bradley Lawrence Hershey
  • Patent number: 9242104
    Abstract: Various embodiments provide a method performed by an IMD to deliver a therapy to a patient. In some embodiments of the method, the therapy is delivered to the patient, and a trigger that is controlled by the patient is detected by the IMD. The therapy is automatically interrupted in response to the detected trigger, and is automatically restored after a defined period after the detected trigger. In some embodiments of the method, a trigger that is controlled by the patient is detected. The therapy is automatically initiated in response to the detected trigger, and is automatically stopped after a defined period after the detected trigger.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: January 26, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jason J. Hamann, Stephen Ruble, Rafael Carbunaru, David J. Ternes
  • Patent number: 9220909
    Abstract: Disclosed is a remote controller for an implantable medical device having stored contraindication information, which includes information which a patient or clinician might wish to review when assessing the compatibility of a given therapeutic or diagnostic technique or activity with the patient's implant. The stored contraindication information is available through a display of the remote controller or via a wired, wireless, or portable drive connection with an external device. By storing contraindication information with the implant's remote controller, patient and clinician can more easily determine the safety of a particular therapeutic or diagnostic technique or physical activity with the patient's implant, perhaps without the need to contact the manufacturer's service representative.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: December 29, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Que Doan
  • Patent number: 9216282
    Abstract: A paddle lead can include a plurality of first electrodes disposed entirely on a first major surface of the lead body and a plurality of second electrodes disposed entirely on a second major surface of the lead body. A paddle lead may include a plurality of electrodes in at least one column on a paddle body and a strip electrode disposed on the paddle body. A lead may include a lead body with an ellipse-like cross-section and a plurality of electrodes disposed circumferentially around the lead body and proximate to a distal end of the lead body.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: December 22, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael Adam Moffitt, Rafael Carbunaru
  • Patent number: 9199071
    Abstract: An electrical stimulation system includes a lead and a connector assembly. The lead includes electrodes, a first terminal array, a second terminal array, and conductors electrically coupling the electrodes to the terminal arrays. The connector assembly includes a first connector port that is open at opposing ends and that electrically couples to the first terminal array. The connector assembly also includes a second connector port that is open at a first end and electrically couples to the second terminal array. The lead and connector assembly simultaneously receive a first portion of the lead, containing the first terminal array, within the first connector port; extend a second portion of the lead out of one end of the first connector port and into the second connector port; and receive a third portion of the lead, containing the second terminal array, within the second connector port of the connector assembly.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: December 1, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Rafael Carbunaru
  • Patent number: 9144673
    Abstract: An implantable device includes an electrode lead body and at least one stimulating electrode contact disposed on or within the electrode lead body, the lead body being configured and arranged to be self anchoring within body tissue. In addition, the invention is directed to methods of making and using such self anchoring implantable devices.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 29, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen N. Jaax, Rafael Carbunaru
  • Publication number: 20150231398
    Abstract: A rechargeable-battery Implantable Medical Device (IMD) is disclosed including a primary battery which can be used as a back up to power critical loads in the IMD when the rechargeable battery is undervoltage and other non-critical loads are thus decoupled from the rechargeable battery. A rechargeable battery undervoltage detector provides at least one rechargeable battery undervoltage control signal to a power supply selector, which is used to set the power supply for the critical loads either to the rechargeable battery voltage when the rechargeable battery is not undervoltage, or to the primary battery voltage when the rechargeable battery is undervoltage. Circuitry for detecting the rechargeable battery undervoltage condition may be included as part of the critical loads, and so the undervoltage control signal(s) is reliably generated in a manner to additionally decouple the rechargeable battery from the load to prevent further rechargeable battery depletion.
    Type: Application
    Filed: January 19, 2015
    Publication date: August 20, 2015
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 9095713
    Abstract: Methods of treating autism include applying at least one stimulus to a stimulation site within the brain of a patient with an implanted stimulator in accordance with one or more stimulation parameters. The stimulus is configured to decrease neural activity within at least a portion of the brain to treat autism. Systems for treating autism include a stimulator configured to apply at least one stimulus to a stimulation site within the brain of a patient in accordance with one or more stimulation parameters. The stimulus is configured to decrease neural activity within at least a portion of the brain to treat autism.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: August 4, 2015
    Inventors: Allison M. Foster, Todd K. Whitehurst, Rafael Carbunaru, Derrick Sung