Patents by Inventor Rafael Carbunaru

Rafael Carbunaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9452288
    Abstract: A system for performing a neurostimulation trial comprises an external trial stimulator capable of delivering stimulation energy to a plurality of electrodes carried by one or more stimulation leads. The external trial stimulator is configurable to operate in a plurality of stimulation energy delivery modes to respectively emulate one of different neurostimulator types. The system may further comprise a programmer capable of configuring the external trial stimulator to operate in one of the stimulation energy delivery modes. The programmer may be capable of generating a first programming screen capable of allowing a first set of stimulation parameters to be defined for the first neurostimulator type, and a second programming screen capable of allowing a second set of stimulation parameters to be defined for a second neurostimulator type.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: September 27, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Todd Whitehurst, Rafael Carbunaru, Kristen Jaax, Andrew DiGiore, Brett D Schleicher
  • Patent number: 9446231
    Abstract: A neurostimulation system and method of providing therapy to a patient implanted with a plurality of electrodes using a plurality of electrical sources is provided. A source-electrode coupling configuration is determined from the electrical sources and electrodes. Electrical current is respectively conveyed between active ones of the plurality of electrical sources and active subsets of the plurality of electrodes in accordance with the determined source-electrode coupling configuration. The total number of the electrodes in the active electrode subsets is greater than the total number of the active electrical sources.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 20, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Kristen Jaax, Andrew DiGiore
  • Patent number: 9446244
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: September 20, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Publication number: 20160250472
    Abstract: A neuromodulation system and method of providing therapy to a patient. A plurality of individual electrical pulse trains is generated at a respective plurality of individual pulse rates. The plurality of individual electrical pulse trains are concurrently respectively from a plurality of electrodes to a common electrode via tissue of the patient, thereby creating a combined electrical pulse train having an average pulse rate equal to or greater than 1 KHz.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventor: Rafael Carbunaru
  • Publication number: 20160250475
    Abstract: A rechargeable-battery Implantable Medical Device (IMD) is disclosed including a primary battery which can be used as a back up to power critical loads in the IMD when the rechargeable battery is undervoltage and other non-critical loads are thus decoupled from the rechargeable battery. A rechargeable battery undervoltage detector provides at least one rechargeable battery undervoltage control signal to a power supply selector, which is used to set the power supply for the critical loads either to the rechargeable battery voltage when the rechargeable battery is not undervoltage, or to the primary battery voltage when the rechargeable battery is undervoltage. Circuitry for detecting the rechargeable battery undervoltage condition may be included as part of the critical loads, and so the undervoltage control signal(s) is reliably generated in a manner to additionally decouple the rechargeable battery from the load to prevent further rechargeable battery depletion.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 9415223
    Abstract: A method and external control device for providing therapy to a patient using first and second electrodes implanted within the patient is provided. A train of electrical multi-phasic pulses is generated. A first electrical current is sourced from the second electrode and at least a portion of the first electrical current is sunk to the first electrode during a stimulation phase of each multi-phasic pulse, thereby therapeutically stimulating a first tissue region adjacent the first electrode. A second electrical current is sourced from the first electrode and at least a portion of the second electrical current is sunk to the second electrode during a charge recovery phase of each multi-phasic pulse, thereby recovering at least a portion of the charge that had been injected into the patient during the stimulation phase of each multi-phasic pulse, and therapeutically stimulating a second tissue region adjacent the second electrode.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: August 16, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Kerry Bradley
  • Patent number: 9409028
    Abstract: Miniature implantable stimulators (i.e., microstimulators) with programmably configurable electrodes allow, among other things, steering of the electric fields created. In addition, the microstimulators are capable of producing unidirectionally propagating action potentials (UPAPs).
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: August 9, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Todd K. Whitehurst, Rafael Carbunaru, Kerry Bradley, James P. McGivern, Matthew I. Haller, Tom Xiaohai He, Janusz A. Kuzma
  • Patent number: 9409022
    Abstract: Methods of treating a medical condition include applying at least one stimulus to a motor cortex within a brain of a patient with an implanted system control unit in accordance with one or more stimulation parameters. Systems for treating a medical condition include a system control unit implanted within the patient that is configured to apply at least one stimulus to a motor cortex within a brain of a patient in accordance with one or more stimulation parameters.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: August 9, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen N. Jaax, Todd K. Whitehurst, Rafael Carbunaru
  • Patent number: 9393421
    Abstract: Systems of techniques for controlling charge flow during the electrical stimulation of tissue. In one aspect, a method includes receiving a charge setting describing an amount of charge that is to flow during a stimulation pulse that electrically stimulates a tissue, and generating and delivering the stimulation pulse in a manner such that an amount of charge delivered to the tissue during the stimulation pulse accords with the charge setting.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: July 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Kelly H. McClure, Jordi Parramon
  • Patent number: 9393423
    Abstract: A method for configuring stimulation pulses in an implantable stimulator device having a plurality of electrodes is disclosed, which method is particularly useful in adjusting the electrodes by current steering during initialization of the device. In one aspect, a set of ideal pulses for patient therapy is determined, in which at least two of the ideal pulses are of the same polarity and are intended to be simultaneous applied to corresponding electrodes on the implantable stimulator device during an initial duration. These pulses are reconstructed into fractionalized pulses, each comprised of pulse portions. The fractionalized pulses are applied to the corresponding electrodes on the device during a final duration, but the pulse portions of the fractionalized pulses are not simultaneously applied during the final duration.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: July 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Rafael Carbunaru, Matt I. Haller
  • Publication number: 20160184577
    Abstract: A lead assembly includes an implantable lead. Electrodes are disposed along a distal end of the lead in an electrode array. Terminals are disposed along a proximal end of the lead in a proximal-most terminal array and a medial terminal array. A terminal extension electrically couples to the medial terminal array. A port is defined in a connector at a first end of the terminal extension. The port has a first end and an opposing second end and forms a continuous passageway therebetween. The port receives the medial terminal array. A contact array includes connector contacts that are disposed within the port and that couple electrically with a terminal array disposed along a second end of the terminal extension. The contact array couples electrically with terminals of the medial terminal array of the lead when the medial terminal array is received by the port.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Matthew Lee McDonald, Jacob Matthew Muhleman, Rafael Carbunaru
  • Patent number: 9358399
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 7, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Publication number: 20160151622
    Abstract: Architectures for implantable stimulators having N electrodes are disclosed. The architectures contains X current sources, or DACs. In a single anode/multiple cathode design, one of the electrodes is designated as the anode, and up to X of the electrodes can be designated as cathodes and independently controlled by one of the X DACs, allowing complex patient therapy and current steering between electrodes. The design uses at least X decoupling capacitors: X capacitors in the X cathode paths, or one in the anode path and X?1 in the X cathode paths. In a multiple anode/multiple cathode design having X DACs, a total of X?1 decoupling capacitors are needed. Because the number of DACs X can typically be much less than the total number of electrodes (N), these architectures minimize the number of decoupling capacitors which saves space, and ensures no DC current injection even during current steering.
    Type: Application
    Filed: February 9, 2016
    Publication date: June 2, 2016
    Inventors: Jordi Parramon, Rafael Carbunaru
  • Patent number: 9352156
    Abstract: Neurostimulation systems and methods for providing therapy to a patient suffering from a symptom of a disease that latently responds to electrical stimulation therapy are provided. First electrical stimulation energy is conveyed to or from a tissue region of the patient in accordance with a first set of stimulation parameters, thereby affecting the symptom. A predetermined period of time estimated for the symptom to resolve in response to electrical stimulation therapy is allowed to elapse. Second electrical stimulation energy is conveyed to or from the tissue region in accordance with a second set of stimulation parameters different from the first set of stimulation parameters.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 31, 2016
    Assignee: Boston Scientific Neurmodulation Corporation
    Inventors: Courtney Lane, Rafael Carbunaru, David K. L. Peterson, Andrew DiGiore
  • Patent number: 9345883
    Abstract: A rechargeable-battery Implantable Medical Device (IMD) is disclosed including a primary battery which can be used as a back up to power critical loads in the IMD when the rechargeable battery is undervoltage and other non-critical loads are thus decoupled from the rechargeable battery. A rechargeable battery undervoltage detector provides at least one rechargeable battery undervoltage control signal to a power supply selector, which is used to set the power supply for the critical loads either to the rechargeable battery voltage when the rechargeable battery is not undervoltage, or to the primary battery voltage when the rechargeable battery is undervoltage. Circuitry for detecting the rechargeable battery undervoltage condition may be included as part of the critical loads, and so the undervoltage control signal(s) is reliably generated in a manner to additionally decouple the rechargeable battery from the load to prevent further rechargeable battery depletion.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: May 24, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Publication number: 20160136443
    Abstract: A system for storing stimulation programs or sets of stimulation parameters includes at least one memory; at least one of i) multiple stimulation programs or ii) a multiple sets of stimulation parameters stored on the at least one memory from multiple different devices remote from the system and used to stimulate different patients; at least one processor coupled to the at least one memory to retrieve the stored stimulation programs or sets of stimulation parameters from the at least one memory when requested and to store additional stimulation programs or sets of stimulation parameters on the at least one memory; and a communications arrangement coupled to the at least one processor to deliver the stored stimulation programs or sets of stimulation parameters to external device and to receive additional stimulation programs and sets of stimulation parameters from external devices.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Sarvani Grandhe, Sridhar Kothandaraman, Soroush Massoumi, Rafael Carbunaru, Dennis Zottola, Bradley Lawrence Hershey
  • Patent number: 9339659
    Abstract: An external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest (hot) and lowest (cold) coupling to the external charger. The intensity of the magnetic charging field is optimized for the cold implant to ensure that it is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant to ensure that it does not exceed a power dissipation limit. As a result, charging is optimized to be fast for all of the implants, while still safe from a tissue heating perspective.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9339655
    Abstract: A neuromodulation system and method of providing therapy to a patient. A plurality of individual electrical pulse trains is generated at a respective plurality of individual pulse rates. The plurality of individual electrical pulse trains are concurrently respectively from a plurality of electrodes to a common electrode via tissue of the patient, thereby creating a combined electrical pulse train having an average pulse rate equal to or greater than 1 KHz.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Rafael Carbunaru
  • Patent number: 9327069
    Abstract: Methods of treating a medical condition include applying at least one stimulus to a stimulation site within the brain of a patient with an implanted stimulator in accordance with one or more stimulation parameters. The at least one stimulus is configured to promote neural remodeling within the brain of the patient. Systems for treating a medical condition include an implantable stimulator configured to apply at least one stimulus to a stimulation site within the brain of a patient in accordance with one or more stimulation parameters. The at least one stimulus is configured to promote neural remodeling within the brain of the patient.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: May 3, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Allison M. Foster, Rafael Carbunaru, Kristen N. Jaax, Todd K. Whitehurst
  • Publication number: 20160101291
    Abstract: Apparatus and methods for charging an implanted medical device.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 14, 2016
    Inventors: Kristen Jaax, Rafael Carbunaru, Mun Pook Lui, Todd K. Whitehurst, Andrew DiGiore, Brett Daniel Schleicher, Gregory Baldwin, Michael A. Moffitt, Jeffery Van Funderburk, James C. Makous