Patents by Inventor Rafael Romay Juárez

Rafael Romay Juárez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11125860
    Abstract: An optical safety scanner system comprises a first illumination source for detecting presence and distances of people or other objects within a hazardous industrial area based on triangulation, and a second illumination source that verifies accurate and reliable detection by the first illumination source. The first illumination source can project LED or laser light for triangulation of objects, and the second illumination source can project a wide beam of light for detection of other intrusive objects that may be blocking the scanner system's camera and preventing accurate triangulation of people or vehicles. If the image frame generated based on the second light identifies presence of an object that is not detected by the triangulation analysis of the laser light, the safety scanner system assumes that an object is obstructing the safety scanner system's camera, and performs a suitable safety action.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 21, 2021
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Richard Galera, Anne E. Bowlby, Derek W. Jones, Nilesh Pradhan, Amanda Jimenez Marrufo, Fernando Manuel Medeiro Hidalgo, Rafael Dominguez Castro, Rafael Romay Juárez, Sergio Morillas Castillo
  • Publication number: 20190101623
    Abstract: An optical safety scanner system comprises a first illumination source for detecting presence and distances of people or other objects within a hazardous industrial area based on triangulation, and a second illumination source that verifies accurate and reliable detection by the first illumination source. The first illumination source can project LED or laser light for triangulation of objects, and the second illumination source can project a wide beam of light for detection of other intrusive objects that may be blocking the scanner system's camera and preventing accurate triangulation of people or vehicles. If the image frame generated based on the second light identifies presence of an object that is not detected by the triangulation analysis of the laser light, the safety scanner system assumes that an object is obstructing the safety scanner system's camera, and performs a suitable safety action.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Richard Galera, Anne E. Bowlby, Derek W. Jones, Nilesh Pradhan, Amanda Jimenez Marrufo, Fernando Manuel Medeiro Hidalgo, Rafael Dominguez Castro, Rafael Romay Juárez, Sergio Morillas Castillo
  • Patent number: 9979904
    Abstract: The present invention relates to reading-out sensor array pixels. In particular, the present invention provides an approach according to which only a region of interest is may be read out from the sensor array, thus leading to substantial time savings. In order to achieve this, a circuitry for configuring a region of interest for the sensor array is provided as well as a reading-out circuitry for reading-out pixels belonging to the region of interest. In addition, the corresponding methods for programming the region of interest and for reading-out the region of interest are provided. The circuitry for programming and/or reading-out the region of interest includes per pixel provided storage elements for storing an indication of whether a pixel belongs to a region of interest (ROI). These are configured by the programming circuitry and using when reading-out the ROI for only reading out the pixels of the ROI.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: May 22, 2018
    Assignee: INNOVACIONES MICROELECTRÓNICAS S.L. (ANAFOCUS)
    Inventors: Rafael Dominguez Castro, Sergio Morillas Castillo, Rafael Romay Juárez, Fernando Medeiro Hidalgo
  • Patent number: 9921300
    Abstract: A time-of-flight (TOF) sensor device is provided that is capable of accurately recovering waveforms of reflected light pulses incident on the sensor's photo-receiver array using a low sampling rate. A number of samples for a received light pulse incident on a given photo-receiver are obtained by emitting a light pulse to the viewing field, integrating the electrical output generated by the photo receiver over an integration period, and adding the integral values for respective integration cycles to yield an accumulation value. This process is repeated for multiple accumulation cycles; however, for each consecutive accumulation cycle the start of the integration period is delayed relative the start time of the integration period for the previous cycle by a delay period. Sampled values for the waveform are obtained by determining the difference values between consecutive accumulation values for the respective accumulation cycles.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 20, 2018
    Assignees: Rockwell Automation Technologies, Inc., Innovaciones Microelectrónicas S.L.
    Inventors: Richard Galera, Anne Bowlby, Derek W. Jones, Nilesh Pradhan, Francis L. Leard, Rafael Dominguez Castro, Sergio Morillas Castillo, Rafael Romay Juárez
  • Patent number: 9894294
    Abstract: The present invention relates to reading-out sensor array pixels. In particular, the present invention provides an approach according to which only a region of interest with arbitrary geometry may be read out from the sensor array, thus leading to substantial time savings. In order to achieve this, a circuitry is provided for automatic determining of a ROI and reading out the ROI from the sensor array. The circuitry includes a fast reading-out circuitry which is less precise but faster than the accurate reading-out circuitry for reading-out the pixels of the sensor array. The fast reading-out circuitry reads out the pixels with low-level precision and determines by the processing of the fast read-out pixels the ROI which is then provided to an in-pixel ROI programming circuit for storing the ROI identification and by means thereof to the accurate reading-out circuit which then reads out only the pixels determined to belong to the ROI. The accurate read-out circuit is slower than the fast read-out circuit.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: February 13, 2018
    Assignee: INNOVACIONES MICROELECTRÓNICAS S.L. (ANAFOCUS)
    Inventors: Rafael Dominguez Castro, Sergio Morillas Castillo, Rafael Romay Juárez, Fernando Medeiro Hidalgo
  • Publication number: 20150365610
    Abstract: The present invention relates to reading-out sensor array pixels. In particular, the present invention provides an approach according to which only a region of interest with arbitrary geometry may be read out from the sensor array, thus leading to substantial time savings. In order to achieve this, a circuitry is provided for automatic determining of a ROI and reading out the ROI from the sensor array. The circuitry includes a fast reading-out circuitry which is less precise but faster than the accurate reading-out circuitry for reading-out the pixels of the sensor array. The fast reading-out circuitry reads out the pixels with low-level precision and determines by the processing of the fast read-out pixels the ROI which is then provided to an in-pixel ROI programming circuit for storing the ROI identification and by means thereof to the accurate reading-out circuit which then reads out only the pixels determined to belong to the ROI. The accurate read-out circuit is slower than the fast read-out circuit.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 17, 2015
    Applicant: Innovaciones MicroelectróNicas S.L. (Anafocus)
    Inventors: Rafael DOMINGUEZ CASTRO, Sergio MORILLAS CASTILLO, Rafael ROMAY JUÁREZ, Fernando MEDEIRO HIDALGO
  • Publication number: 20150358571
    Abstract: The present invention relates to reading-out sensor array pixels. In particular, the present invention provides an approach according to which only a region of interest is may be read out from the sensor array, thus leading to substantial time savings. In order to achieve this, a circuitry for configuring a region of interest for the sensor array is provided as well as a reading-out circuitry for reading-out pixels belonging to the region of interest. In addition, the corresponding methods for programming the region of interest and for reading-out the region of interest are provided. The circuitry for programming and/or reading-out the region of interest includes per pixel provided storage elements for storing an indication of whether a pixel belongs to a region of interest (ROI). These are configured by the programming circuitry and using when reading-out the ROI for only reading out the pixels of the ROI.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 10, 2015
    Applicant: Innovaciones Microelectrónicas S.L.(Anafocus)
    Inventors: Rafael DOMINGUEZ CASTRO, Sergio MORILLAS CASTILLO, Rafael ROMAY JUÁREZ, Fernando MEDEIRO HIDALGO
  • Publication number: 20150331092
    Abstract: A time-of-flight (TOF) sensor device is provided that is capable of accurately recovering waveforms of reflected light pulses incident on the sensor's photo-receiver array using a low sampling rate. A number of samples for a received light pulse incident on a given photo-receiver are obtained by emitting a light pulse to the viewing field, integrating the electrical output generated by the photo receiver over an integration period, and adding the integral values for respective integration cycles to yield an accumulation value. This process is repeated for multiple accumulation cycles; however, for each consecutive accumulation cycle the start of the integration period is delayed relative the start time of the integration period for the previous cycle by a delay period. Sampled values for the waveform are obtained by determining the difference values between consecutive accumulation values for the respective accumulation cycles.
    Type: Application
    Filed: January 29, 2015
    Publication date: November 19, 2015
    Inventors: Richard Galera, Anne Bowlby, Derek W. Jones, Nilesh Pradhan, Francis L. Leard, Rafael Dominguez Castro, Sergio Morillas Castillo, Rafael Romay Juárez