Patents by Inventor RAHUL RAMASWAMY

RAHUL RAMASWAMY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210184051
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, a first transistor over the substrate, where the first transistor comprises a vertical stack of first semiconductor channels, and a first gate dielectric surrounding each of the first semiconductor channels. The first gate dielectric has a first thickness. In an embodiment, the semiconductor device further comprises a second transistor over the substrate, where the second transistor comprises a second semiconductor channel. The second semiconductor channel comprises pair of sidewalls and a top surface. In an embodiment, a second gate dielectric is over the pair of sidewalls and the top surface of the fin, where the second gate dielectric has a second thickness that is greater than the first thickness.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Tanuj TRIVEDI, Rahul RAMASWAMY, Jeong Dong KIM, Ting CHANG, Walid M. HAFEZ, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Publication number: 20210184000
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, and a first transistor of a first conductivity type over the substrate. In an embodiment, the first transistor comprises a first semiconductor channel, and a first gate electrode around the first semiconductor channel. In an embodiment, the semiconductor device further comprises a second transistor of a second conductivity type above the first transistor. The second transistor comprises a second semiconductor channel, and a second gate electrode around the second semiconductor channel. In an embodiment, the second gate electrode and the first gate electrode comprise different materials.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Rahul RAMASWAMY, Walid M. HAFEZ, Tanuj TRIVEDI, Jeong Dong KIM, Ting CHANG, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Patent number: 10964690
    Abstract: Techniques are disclosed for forming semiconductor structures including resistors between gates on self-aligned gate edge architecture. A semiconductor structure includes a first semiconductor fin extending in a first direction, and a second semiconductor fin adjacent to the first semiconductor fin, extending in the first direction. A first gate structure is disposed proximal to a first end of the first semiconductor fin and over the first semiconductor fin in a second direction, orthogonal to the first direction, and a second gate structure is disposed proximal to a second end of the first semiconductor fin and over the first semiconductor fin in the second direction. A first structure comprising isolation material is centered between the first and second semiconductor fins. A second structure comprising resistive material is disposed in the first structure, the second structure extending at least between the first gate structure and the second gate structure.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Hsu-Yu Chang, Neville L. Dias, Rahul Ramaswamy, Nidhi Nidhi, Chen-Guan Lee
  • Patent number: 10930729
    Abstract: Fin-based thin film resistors, and methods of fabricating fin-based thin film resistors, are described. In an example, an integrated circuit structure includes a fin protruding through a trench isolation region above a substrate. The fin includes a semiconductor material and has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. An isolation layer is conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A resistor layer is conformal with the isolation layer conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A first anode cathode electrode is electrically connected to the resistor layer. A second anode or cathode electrode is electrically connected to the resistor layer.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Rahul Ramaswamy, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20200395358
    Abstract: Disclosed herein are IC structures, packages, and devices that include self-aligned III-N transistors monolithically integrated on the same support structure or material (e.g., a substrate, a die, or a chip) as extended-drain III-N transistors. Self-aligned III-N transistors may provide a viable approach to implementing digital logic circuits, e.g., to implementing enhancement mode transistors, on the same support structure with extended-drain III-N transistors which may be used as high-power transistors used to implement various RF components, thus enabling integration of III-N devices with digital logic.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Johann Christian Rode, Walid M. Hafez
  • Patent number: 10854757
    Abstract: A transistor including a channel disposed between a source and a drain, a gate electrode disposed on the channel and surrounding the channel, wherein the source and the drain are formed in a body on a substrate and the channel is separated from the body. A method of forming an integrated circuit device including forming a trench in a dielectric layer on a substrate, the trench including dimensions for a transistor body including a width; forming a channel material in the trench; recessing the dielectric layer to expose a first portion of the channel material; increasing a width dimension of the exposed channel material; recessing the dielectric layer to expose a second portion of the channel material; removing the second portion of the channel material; and forming a gate stack on the first portion of the channel material, the gate stack including a gate dielectric and a gate electrode.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Hsu-Yu Chang, Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20200373297
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor-based cascode arrangements that may simultaneously realize enhancement mode transistor operation and high voltage capability. In one aspect, an IC structure includes a source region, a drain region, an enhancement mode III-N transistor, and a depletion mode III-N transistor, where each of the transistors includes a first and a second source or drain (S/D) terminals. The transistors are arranged in a cascode arrangement in that the first S/D terminal of the enhancement mode III-N transistor is coupled to the source region, the second S/D terminal of the enhancement mode III-N transistor is coupled to the first S/D terminal of the depletion mode III-N transistor, and the second S/D terminal of the depletion mode III-N transistor is coupled to the drain region.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200373421
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor arrangements that may reduce nonlinearity of off-state capacitance of the III-N transistors. In various aspects, III-N transistor arrangements limit the extent of access regions of the transistors, compared to conventional implementations, which may limit the depletion of the access regions. Due to the limited extent of the depletion regions of a transistor, the off-state capacitance may exhibit less variability in values across different gate-source voltages and, hence, exhibit a more linear behavior during operation.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200335590
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors implementing various means by which their threshold voltage it tuned. In some embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included in a gate stack of the transistor. In other embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included between a gate stack and a III-N channel stack of the transistor. Including doped semiconductor or fixed charge materials either in the gate stack or between the gate stack and the III-N channel stack of III-N transistors adds charges, which affects the amount of 2DEG and, therefore, affects the threshold voltages of these transistors.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Marko Radosavljevic, Sansaptak Dasgupta, Yang Cao, Han Wui Then, Johann Christian Rode, Rahul Ramaswamy, Walid M. Hafez, Paul B. Fischer
  • Publication number: 20200335592
    Abstract: Disclosed herein are IC structures, packages, and devices that include transistors, e.g., III-N transistors, having a source region, a drain region (together referred to as “source/drain” (S/D) regions), and a gate stack. In one aspect, a contact to at least one of the S/D regions of a transistor may have a width that is smaller than a width of the S/D region. In another aspect, a contact to a gate electrode material of the gate stack of a transistor may have a width that is smaller than a width of the gate electrode material. Reducing the width of contacts to S/D regions or gate electrode materials of a transistor may reduce the overlap area between various pairs of these contacts, which may, in turn, allow reducing the off-state capacitance of the transistor. Reducing the off-state capacitance of III-N transistors may advantageously allow increasing their switching frequency.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann Christian Rode, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Publication number: 20200335526
    Abstract: Disclosed herein are IC structures, packages, and devices that include Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si transistors or other non-Si-based devices. In some aspects, the Si-based semiconductor material stack may be provided by semiconductor regrowth over an insulator material. Providing a Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si based devices may provide a viable approach to integrating Si-based transistors with non-Si technologies because the Si-based semiconductor material stack may serve as a foundation for forming Si-based transistors.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Patent number: 10811751
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming the electromagnetic waveguide. In an embodiment the electromagnetic waveguide includes a first spacer and a second spacer. In an embodiment, the first and second spacer each have a reentrant profile. The electromagnetic waveguide may also include a conductive body formed between in the first and second spacer, and a void formed within the conductive body. In an additional embodiment, the electromagnetic waveguide may include a first spacer and a second spacer. Additionally, the electromagnetic waveguide may include a first portion of a conductive body formed along sidewalls of the first and second spacer and a second portion of the conductive body formed between an upper portion of the first portion of the conductive body. In an embodiment, the first portion of the conductive body and the second portion of the conductive body define a void through the electromagnetic waveguide.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Chia-Hong Jan, Walid Hafez, Neville Dias, Hsu-Yu Chang, Roman Olac-Vaw, Chen-Guan Lee
  • Publication number: 20200312961
    Abstract: Disclosed herein are IC structures, packages, and devices that include thin-film transistors (TFTs) integrated on the same substrate/die/chip as III-N devices, e.g., III-N transistors. In various aspects, TFTs integrated with III-N transistors have a channel and source/drain materials that include one or more of a crystalline material, a polycrystalline semiconductor material, or a laminate of crystalline and polycrystalline materials. In various aspects, TFTs integrated with III-N transistors are engineered to include one or more of 1) graded dopant concentrations in their source/drain regions, 2) graded dopant concentrations in their channel regions, and 3) thicker and/or composite gate dielectrics in their gate stacks.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Samuel Jack Beach, Xiaojun Weng, Johann Christian Rode, Marko Radosavljevic, Sansaptak Dasgupta
  • Publication number: 20200303371
    Abstract: Disclosed herein are integrated circuit structures, packages, and devices that include resistors and/or capacitors which may be provided on the same substrate/die/chip as III-N devices, e.g., III-N transistors. An integrated circuit structure, comprising a base structure comprising a III-N material, the base structure having a conductive region of a doped III-N material. The IC structure further comprises a first contact element, including a first conductive element, a dielectric element, and a second conductive element, wherein the dielectric element is between the first conductive element and the second conductive element, and wherein the first conductive element is between the conductive region and the dielectric element. The IC structure further comprises a second contact element electrically coupled to the first contact element via the conductive region.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Han Wui Then, Marko Radosavljevic, Johann Christian Rode, Paul B. Fischer, Walid M. Hafez
  • Publication number: 20200295172
    Abstract: Disclosed herein are IC structures, packages, and device assemblies with III-N transistors that include additional materials, referred to herein as “stressor materials,” which may be selectively provided over portions of polarization materials to locally increase or decrease the strain in the polarization material. Providing a compressive stressor material may decrease the tensile stress imposed by the polarization material on the underlying portion of the III-N semiconductor material, thereby decreasing the two-dimensional electron gas (2DEG) and increasing a threshold voltage of a transistor. On the other hand, providing a tensile stressor material may increase the tensile stress imposed by the polarization material, thereby increasing the 2DEG and decreasing the threshold voltage. Providing suitable stressor materials enables easier and more accurate control of threshold voltage compared to only relying on polarization material recess.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 17, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Nidhi Nidhi, Rahul Ramaswamy, Paul B. Fischer, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200294932
    Abstract: IC structures that include transmission line structures to be integrated with III-N devices are disclosed. An example transmission line structure includes a transmission line of an electrically conductive material provided above a stack of a III-N semiconductor material and a polarization material. The transmission line structure further includes means for reducing electromagnetic coupling between the line and charge carriers present below the interface of the polarization material and the III-N semiconductor material. In some embodiments, said means include a shield material of a metal or a doped semiconductor provided over portions of the polarization material that are under the transmission line. In other embodiments, said means include dopant atoms implanted into the portions of the polarization material that are under the transmission line, and into at least an upper portion of the III-N semiconductor material under such portions of the polarization material.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200279932
    Abstract: Disclosed herein are IC structures, packages, and devices that include planar III-N transistors with wrap-around gates and/or one or more wrap-around source/drain (S/D) contacts. An example IC structure includes a support structure (e.g., a substrate) and a planar III-N transistor. The transistor includes a channel stack of a III-N semiconductor material and a polarization material, provided over the support structure, a pair of S/D regions provided in the channel stack, and a gate stack of a gate dielectric material and a gate electrode material provided over a portion of the channel stack between the S/D regions, where the gate stack at least partially wraps around an upper portion of the channel stack.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Johann Christian Rode, Paul B. Fischer, Walid M. Hafez
  • Patent number: 10763209
    Abstract: A MOS antifuse with an accelerated dielectric breakdown induced by a void or seam formed in the electrode. In some embodiments, the programming voltage at which a MOS antifuse undergoes dielectric breakdown is reduced through intentional damage to at least part of the MOS antifuse dielectric. In some embodiments, damage may be introduced during an etchback of an electrode material which has a seam formed during backfilling of the electrode material into an opening having a threshold aspect ratio. In further embodiments, a MOS antifuse bit-cell includes a MOS transistor and a MOS antifuse. The MOS transistor has a gate electrode that maintains a predetermined voltage threshold swing, while the MOS antifuse has a gate electrode with a void accelerated dielectric breakdown.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Roman Olac-Vaw, Walid Hafez, Chia-Hong Jan, Hsu-Yu Chang, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu, Neville Dias
  • Patent number: 10761264
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming electromagnetic waveguides. In an embodiment, the electromagnetic waveguide may include a first semiconductor fin extending up from a substrate and a second semiconductor fin extending up from the substrate. The fins may be bent towards each other so that a centerline of the first semiconductor fin and a centerline of the second semiconductor fin extend from the substrate at a non-orthogonal angle. Accordingly, a cavity may be defined by the first semiconductor fin, the second semiconductor fin, and a top surface of the substrate. Embodiments of the invention may include a metallic layer and a cladding layer lining the surfaces of the cavity. Additional embodiments may include a core formed in the cavity.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Chia-Hong Jan, Walid Hafez, Neville Dias, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20200273860
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors integrated on the same support structure as non-III-N transistors (e.g., Si-based transistors), using semiconductor regrowth. In one aspect, a non-III-N transistor may be integrated with an III-N transistor by depositing a III-N material, forming an opening in the III-N material, and epitaxially growing within the opening a semiconductor material other than the III-N material. Since the III-N material may serve as a foundation for forming III-N transistors, while the non-III-N material may serve as a foundation for forming non-III-N transistors, such an approach advantageously enables implementation of both types of transistors on a single support structure. Proposed integration may reduce costs and improve performance by enabling integrated digital logic solutions for III-N transistors and by reducing losses incurred when power is routed off chip in a multi-chip package.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak Dasgupta, Johann Christian Rode, Han Wui Then, Marko Radosavljevic, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Sandrine Charue-Bakker, Walid M. Hafez