Patents by Inventor Raisa Minkov

Raisa Minkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9138692
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 22, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Patent number: 8931646
    Abstract: The present invention discloses a blends of an aromatic polyimide polymer and a polymer containing aromatic sulfonic acid groups that can be converted into polybenzoxazole (PBO) membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 13, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
  • Patent number: 8915379
    Abstract: The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
  • Patent number: 8912288
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8710173
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 29, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8704030
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 22, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8614288
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 24, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8575414
    Abstract: The present invention involves the use of a novel membrane system for natural gas upgrading. This membrane system includes a first-stage membrane such as a membrane prepared from the polymer of intrinsic microporosity (PIM) to selectively remove hydrocarbons from C3 to C35 to control the dew point of natural gas, and a second-stage membrane such as a polybenzoxazole (PBO) or crosslinked PBO membrane to selectively remove CO2 from natural gas. The new membrane system described in the current invention eliminates the use of high cost and high footprint membrane pretreatment. Therefore, the membrane system can significantly reduce the footprint and cost for natural gas upgrading compared to the current commercially available membrane systems that include a non-membrane-related pretreatment system.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Syed A. Faheem, Raisa Minkov
  • Patent number: 8459469
    Abstract: The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 11, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
  • Patent number: 8366804
    Abstract: The present invention discloses a new type of polyimide membranes including hollow fiber and flat sheet membranes with high permeances for air separations and a method of making these membranes. The new polyimide hollow fiber membranes have O2 permeance higher than 300 GPU and O2/N2 selectivity higher than 3 at 60° C. under 308 kPa for O2/N2 separation. The new polyimide hollow fiber membranes also have CO2 permeance higher than 1000 GPU and single-gas selectivity for CO2/CH4 higher than 20 at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 5, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Travis C. Bowen, Jeffrey J. Chiou
  • Publication number: 20120322646
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20120322119
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20120323059
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20120322911
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC.
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20120276300
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Patent number: 8241501
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: August 14, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Publication number: 20120157743
    Abstract: The present invention involves the use of a novel membrane system for natural gas upgrading. This membrane system includes a first-stage membrane such as a membrane prepared from the polymer of intrinsic microporosity (PIM) to selectively remove hydrocarbons from C3 to C35 to control the dew point of natural gas, and a second-stage membrane such as a polybenzoxazole (PBO) or crosslinked PBO membrane to selectively remove CO2 from natural gas. The new membrane system described in the current invention eliminates the use of high cost and high footprint membrane pretreatment. Therefore, the membrane system can significantly reduce the footprint and cost for natural gas upgrading compared to the current commercially available membrane systems that include a non-membrane-related pretreatment system.
    Type: Application
    Filed: November 2, 2011
    Publication date: June 21, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Syed A. Faheem, Raisa Minkov
  • Patent number: 8132677
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 13, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Publication number: 20110316181
    Abstract: The present invention provides a process for making an integrally skinned asymmetric polybenzoxazole hollow fiber membrane comprising spinning a dope solution via a dry-wet phase inversion technique to form a porous integrally skinned asymmetric o-hydroxy substituted polyimide or an o-hydroxy substituted polyamide hollow fiber membrane comprising microporous inorganic molecular sieve followed by thermal rearrangement at a temperature from about 250° to 500° C. to convert the polyimide or polyamide membrane into a polybenzoxazole membrane. These membranes contain microporous inorganic molecular sieve materials that can have a particle size from about 20 nm to 10 ?m.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 29, 2011
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Jaime G. Moscoso
  • Publication number: 20110290112
    Abstract: The present invention discloses a new type of polyimide membranes including hollow fiber and flat sheet membranes with high permeances for air separations and a method of making these membranes. The new polyimide hollow fiber membranes have O2 permeance higher than 300 GPU and O2/N2 selectivity higher than 3 at 60° C. under 308 kPa for O2/N2 separation. The new polyimide hollow fiber membranes also have CO2 permeance higher than 1000 GPU and single-gas selectivity for CO2/CH4 higher than 20 at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Travis C. Bowen, Jeffrey J. Chiou