Patents by Inventor Raja A. Jadhav

Raja A. Jadhav has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200298172
    Abstract: Processes for removing a sulfide or a degradation product thereof from in a gas dehydration system are disclosed along with corresponding gas dehydration systems. The processes and systems include contacting a stream comprising the sulfide or a degradation product thereof with an anionic resin to remove at least a portion of the sulfide or a degradation product thereof from the stream. The processes and systems can also be used in the removal of mercury from gas dehydration systems.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 24, 2020
    Inventors: Marcus Dutra E. MELLO, Raja JADHAV, Zunqing Alice HE, Joshua A. THOMPSON
  • Patent number: 9023244
    Abstract: The invention includes a process which eliminates or reduces the CO2 emissions from a steam methane reforming and autothermal reforming plant. The process preferentially uses temperature swing adsorption units which are employed to purify the hydrogen stream instead of more conventional solvent based aMDEA plants to remove the CO2 from the gas stream when creating a higher purity hydrogen stream.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventor: Raja A. Jadhav
  • Patent number: 8926941
    Abstract: The invention involves the use of a temperature swing adsorption process in steam methane reforming or autothermal reforming H2-production processes to capture CO2 and produce nearly pure off gas streams of CO2 for sequestration or enhanced oil recovery (EOR). The hydrogen stream output is substantially pure and can be recycled as a fuel to the steam methane reformer furnace or used in other petroleum and petrochemical processes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventor: Raja A. Jadhav
  • Publication number: 20140186255
    Abstract: The invention involves the use of a temperature swing adsorption process in steam methane reforming or autothermal reforming H2-production processes to capture CO2 and produce nearly pure off gas streams of CO2 for sequestration or enhanced oil recovery (EOR). The hydrogen stream output is substantially pure and can be recycled as a fuel to the steam methane reformer furnace or used in other petroleum and petrochemical processes.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventor: Raja A. Jadhav
  • Publication number: 20140186257
    Abstract: The invention includes a process which eliminates or reduces the CO2 emissions from a steam methane reforming and autothermal reforming plant. The process preferentially uses temperature swing adsorption units which are employed to purify the hydrogen stream instead of more conventional solvent based aMDEA plants to remove the CO2 from the gas stream when creating a higher purity hydrogen stream.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventor: Raja A. Jadhav
  • Patent number: 8404909
    Abstract: A method of biomass pyrolysis is described which includes chemical looping of combustion char so that carbon dioxide can be captured from the combustion of the char as well as producing useable compounds from pyrolyzing biomass in a pyrolysis reactor including a metal oxide carrier particles which is in operative cooperation with a char combustor and oxidation reactor and separator for separating carbon dioxide from the flue gas produced by the char combustor.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: March 26, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Raja A Jadhav
  • Patent number: 8356992
    Abstract: An oxyfiring system and method for capturing carbon dioxide in a combustion process is disclosed. The oxyfiring system comprises (a) an oxidation reactor for oxidizing a reduced metal oxide; (b) a decomposition reactor wherein a decomposition fuel is combusted and oxidized metal oxide sorbents are reduced with oxygen being released and a flue gas with an oxygen enriched carbon dioxide stream is produced; (c) a fuel combustion reactor for combusting a primary fuel and the oxygen enriched carbon dioxide stream into a primary flue gas; and (d) separation apparatus for separating a portion of the primary flue gas so that a carbon dioxide enriched stream can be prepared. The method comprises providing a primary fuel and an oxygen enriched carbon dioxide stream to a fuel combustion reactor. The primary fuel and oxygen enriched carbon dioxide stream are combusted into a primary flue gas stream which is split into a first flue gas portion and a second flue gas portion.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 22, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Raja A Jadhav
  • Publication number: 20110132737
    Abstract: A system and method for biomass pyrolysis utilizing chemical looping combustion of a produced char to capture carbon dioxide is disclosed. The system includes a biomass pyrolysis reactor, a char combustor, and oxidation reactor and a separator for separating carbon dioxide from flue gas produced by the char combustion. The pyrolysis reactor pyrolyzes biomass in the presence of reduced metal oxide sorbents producing char and pyrolysis oil vapor. The char is separated and combusted in the char combustor, in the presence of oxidized metal oxide sorbents, into a gaseous stream of carbon dioxide and water vapor. The carbon dioxide and water are separated so that a stream of carbon dioxide may be captured. The oxidation reactor oxidizes, in the presence of air, a portion of reduced metal oxide sorbents into oxidized metal oxide sorbents that are looped back to the char combustor to provide oxygen for combustion.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Inventor: Raja A. Jadhav
  • Publication number: 20110129408
    Abstract: An oxyfiring system and method for capturing carbon dioxide in a combustion process is disclosed. The oxyfiring system comprises (a) an oxidation reactor for oxidizing a reduced metal oxide; (b) a decomposition reactor wherein a decomposition fuel is combusted and oxidized metal oxide sorbents are reduced with oxygen being released and a flue gas with an oxygen enriched carbon dioxide stream is produced; (c) a fuel combustion reactor for combusting a primary fuel and the oxygen enriched carbon dioxide stream into a primary flue gas; and (d) separation apparatus for separating a portion of the primary flue gas so that a carbon dioxide enriched stream can be prepared. The method comprises providing a primary fuel and an oxygen enriched carbon dioxide stream to a fuel combustion reactor. The primary fuel and oxygen enriched carbon dioxide stream are combusted into a primary flue gas stream which is split into a first flue gas portion and a second flue gas portion.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventor: Raja A. Jadhav
  • Patent number: 7938893
    Abstract: A system for the selective removal of CO2, H2S, and H2 from a gaseous fluid mixture comprising CO2, H2S, and H2, which system includes a first membrane section having a nonporous metal oxide membrane, a second membrane section having a CO2-selective membrane, and a third membrane section having an H2-selective membrane. Each membrane section has a feed side and a permeate side and the membrane sections are arranged in series whereby the gaseous fluid mixture contacts the feed side, in sequence, of the first membrane section, the second membrane section and the third membrane section, resulting first in the separation or removal of H2S, second in the separation or removal of CO2, and third in the separation or removal of H2. The process can be used to process synthesis gas generated from the gasification or reforming of carbonaceous materials for hydrogen production and carbon dioxide capture.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 10, 2011
    Assignee: Gas Technology Institute
    Inventors: Shain-Jer Doong, Raja A. Jadhav, Francis Lau
  • Patent number: 7572318
    Abstract: A nonporous metal carbonate membrane for selective separation of CO2 from a CO2-containing fluid having a porous substrate having a feed side and a permeate side. The membrane is also suitable for removal of H2S that may be present in the fluid.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: August 11, 2009
    Assignee: Gas Technology Institute
    Inventors: Raja A. Jadhav, Shain J. Doong
  • Patent number: 7556672
    Abstract: A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25° C. to about 300° C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100° C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: July 7, 2009
    Assignee: Gas Technology Institute
    Inventor: Raja A. Jadhav
  • Publication number: 20080184884
    Abstract: A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25° C. to about 300° C. until the mercury concentration in the gaseous stream after contacting the sorbent exceeds a predetermined breakthrough level, signaling a spent sorbent. Arsenic, cadmium and selenium present in the gaseous stream may also be captured along with the mercury. The spent sorbent is then contacted with a desorbing gaseous stream at a temperature equal to or slightly higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is then captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100° C.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 7, 2008
    Applicant: GAS TECHNOLOGY INSTITUTE
    Inventor: Raja A. Jadhav
  • Publication number: 20070240570
    Abstract: A nonporous metal carbonate membrane for selective separation of CO2 from a CO2-containing fluid having a porous substrate having a feed side and a permeate side. The membrane is also suitable for removal of H2S that may be present in the fluid.
    Type: Application
    Filed: April 18, 2006
    Publication date: October 18, 2007
    Inventors: Raja Jadhav, Shain Doong
  • Publication number: 20070240565
    Abstract: A system for the selective removal of CO2, H2S, and H2 from a gaseous fluid mixture comprising said CO2, H2S, and H2, which system includes a first membrane section having a nonporous metal oxide membrane, a second membrane section having a CO2-selective membrane, and a third membrane section having an H2-selective membrane. Each membrane section has a feed side and a permeate side and the membrane sections are arranged in series whereby the gaseous fluid mixture contacts the feed side, in sequence, of the first membrane section, the second membrane section and the third membrane section, resulting first in the separation or removal of H2S, second in the separation or removal of CO2, and third in the separation or removal of H2. The process can be used to process synthesis gas generated from the gasification or reforming of carbonaceous materials for hydrogen production and carbon dioxide capture.
    Type: Application
    Filed: August 28, 2006
    Publication date: October 18, 2007
    Applicant: GAS TECHNOLOGY INSTITUTE
    Inventors: Shain-Jer Doong, Raja A. Jadhav, Francis Lau