Patents by Inventor Raja Reddy Patukuri

Raja Reddy Patukuri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240057923
    Abstract: Systems, apparatus, articles of manufacture, and methods are disclosed to detect a pace pulse in an electrocardiogram (ECG) signal. An example apparatus includes programmable circuitry configured to execute instructions to: identify a leading edge of a pulse in an input signal based on an amplitude change; identify a transition time of the leading edge of the pulse; validate the leading edge of the pulse based on the amplitude change and transition time; identify a trailing edge of the pulse; determine a width of the pulse between the leading edge and the trailing edge; and validate the pulse based on the width.
    Type: Application
    Filed: May 31, 2023
    Publication date: February 22, 2024
    Inventors: Nithin Jose, Anand Hariraj Udupa, Sachin Aithal, Raja Reddy Patukuri, Ashin Antony
  • Publication number: 20240027508
    Abstract: An example apparatus includes: calibration circuitry configured to determine a second current at a second terminal of a second impedance circuit based on a first parasitic capacitance, a first impedance value, a third impedance value, a first voltage, and a second voltage; determine a third voltage at a second terminal of a second impedance circuit based on the first parasitic capacitance, a second impedance value, the third impedance value, the second voltage, and the second current; and determine a second parasitic capacitance between the second terminal of the second impedance circuit and the second terminal of a fifth impedance circuit based on the second current, the third voltage, a third current at the second terminal of the fifth impedance circuit, and a fourth voltage at the second terminal of the fifth impedance circuit.
    Type: Application
    Filed: March 30, 2023
    Publication date: January 25, 2024
    Inventors: Aatish Chandak, Aravind Miriyala, Midhun Raveendran, Anand Hariraj Udupa, Raja Reddy Patukuri, Prabin Krishna Yadav
  • Publication number: 20230341528
    Abstract: A system comprises a photosensor and a controller. A first photoemitter transmits light onto objects at first height, a second photoemitter onto objects at second, lower height, and a third photoemitter onto objects at third, lowest height. The controller causes one of the photoemitters to transmit modulated light and the photosensor to receive reflections from a scene. The controller determines a depth map for the corresponding height based on phase differences between the transmitted and reflected light. In some examples, the system is included in an autonomous robot's navigation system. The navigation system identifies overhanging objects at the robot's top from the depth map at the first height, obstacles in the navigation route from a second depth map at the second height, and cliffs and drop-offs in the ground surface in front of the robot from the third depth map at the third height.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Yichang Wang, Karthik Rajagopal Ganapathy, Raja Reddy Patukuri
  • Patent number: 11733360
    Abstract: A time of flight (ToF) system comprises three photoemitters, a photosensor, and a controller. The first photoemitter transmits light onto objects at first height, the second photoemitter onto objects at second, lower height, and the third photoemitter onto objects at third, lowest height. The controller causes one of the photoemitters to transmit modulated light and the photosensor to receive reflections from the scene. The controller determines a depth map for the corresponding height based on phase differences between the transmitted and reflected light. In some examples, the ToF system is included in an autonomous robot's navigation system. The navigation system identifies overhanging objects at the robot's top from the depth map at the first height, obstacles in the navigation route from the depth map at the second height, and cliffs and drop-offs in the ground surface in front of the robot from the depth map at the third height.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 22, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yichang Wang, Karthik Rajagopal Ganapathy, Raja Reddy Patukuri
  • Patent number: 11579106
    Abstract: The disclosure provides a measurement circuit. The measurement circuit includes a control engine. An excitation source is coupled to the control engine. A first set of electrodes and a second set of electrodes are coupled to the excitation source and receive current from the excitation source. The control engine operates the excitation source in a first mode and a second mode. The control engine, in the first mode, measures a parasitic impedance associated with the first and the second set of electrodes, and the control engine, in the second mode, measures an impedance of the first and the second set of electrodes and of an external object.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 14, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aatish Chandak, Raja Reddy Patukuri, Aravind Miriyala, Sandeep Oswal
  • Publication number: 20220416741
    Abstract: An ECG signal acquisition system includes a first amplifier which has a non-inverting input adapted to be coupled to a first differential input, an inverting input adapted to be coupled to a second differential input, and an output. The system includes first and second biasing resistors coupled between the non-inverting and inverting inputs of the first amplifier. The system includes an average estimation circuit which has a first input coupled to the non-inverting input of the first amplifier and a second input coupled to the inverting input of the first amplifier. The system includes a driver amplifier which has an inverting input coupled to the output of the average estimation circuit, a non-inverting input coupled to receive a reference common-mode voltage, and an output. The system includes a low-pass filter coupled between the output of the driver amplifier and the biasing resistors.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Inventors: Sandeep Oswal, Raja Reddy Patukuri, Aravind Miriyala, Anand Hariraj Udupa, Hari Babu Tippana, Aatish Chandak
  • Patent number: 11233525
    Abstract: The disclosure provides a receiver with high dynamic range. The receiver includes a photodiode that generates a current signal. A coupling capacitor is coupled to the photodiode, and generates a modulation signal in response to the current signal received from the photodiode. A sigma delta analog to digital converter (ADC) is coupled to the coupling capacitor, and generates a digital data in response to the modulation signal. A digital mixer is coupled to the sigma delta ADC, and generates an in-phase component and a quadrature component corresponding to the digital data. A processor is coupled to the digital mixer, and processes the in-phase component and the quadrature component corresponding to the digital data.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: January 25, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jagannathan Venkataraman, Prabu Sankar Thirugnanam, Raja Reddy Patukuri, Sandeep Kesrimal Oswal
  • Patent number: 10985769
    Abstract: A transceiver system includes a clock generator and an analog-to-digital circuit (ADC). The transceiver system also includes a coupling correction circuit coupled to the clock generator and to the ADC, wherein the coupling correction circuit is configured to provide an in-phase correction and a quadrature-phase correction to a signal received by the ADC.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: April 20, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Raja Reddy Patukuri, Jagannathan Venkataraman, Shagun Dusad
  • Publication number: 20210003523
    Abstract: The disclosure provides a measurement circuit. The measurement circuit includes a control engine. An excitation source is coupled to the control engine. A first set of electrodes and a second set of electrodes are coupled to the excitation source and receive current from the excitation source. The control engine operates the excitation source in a first mode and a second mode. The control engine, in the first mode, measures a parasitic impedance associated with the first and the second set of electrodes, and the control engine, in the second mode, measures an impedance of the first and the second set of electrodes and of an external object.
    Type: Application
    Filed: April 20, 2020
    Publication date: January 7, 2021
    Inventors: Aatish Chandak, Raja Reddy Patukuri, Aravind Miriyala, Sandeep Oswal
  • Publication number: 20200386873
    Abstract: A time of flight (ToF) system comprises three photoemitters, a photosensor, and a controller. The first photoemitter transmits light onto objects at first height, the second photoemitter onto objects at second, lower height, and the third photoemitter onto objects at third, lowest height. The controller causes one of the photoemitters to transmit modulated light and the photosensor to receive reflections from the scene. The controller determines a depth map for the corresponding height based on phase differences between the transmitted and reflected light. In some examples, the ToF system is included in an autonomous robot's navigation system. The navigation system identifies overhanging objects at the robot's top from the depth map at the first height, obstacles in the navigation route from the depth map at the second height, and cliffs and drop-offs in the ground surface in front of the robot from the depth map at the third height.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 10, 2020
    Inventors: Yichang Wang, Karthik Rajagopal Ganapathy, Raja Reddy Patukuri
  • Publication number: 20200228127
    Abstract: A transceiver system includes a clock generator and an analog-to-digital circuit (ADC). The transceiver system also includes a coupling correction circuit coupled to the clock generator and to the ADC, wherein the coupling correction circuit is configured to provide an in-phase correction and a quadrature-phase correction to a signal received by the ADC.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Raja Reddy PATUKURI, Jagannathan VENKATARAMAN, Shagun DUSAD
  • Publication number: 20200162097
    Abstract: The disclosure provides a receiver with high dynamic range. The receiver includes a photodiode that generates a current signal. A coupling capacitor is coupled to the photodiode, and generates a modulation signal in response to the current signal received from the photodiode. A sigma delta analog to digital converter (ADC) is coupled to the coupling capacitor, and generates a digital data in response to the modulation signal. A digital mixer is coupled to the sigma delta ADC, and generates an in-phase component and a quadrature component corresponding to the digital data. A processor is coupled to the digital mixer, and processes the in-phase component and the quadrature component corresponding to the digital data.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Jagannathan Venkataraman, Prabu Sankar Thirugnanam, Raja Reddy Patukuri, Sandeep Kesrimal Oswal
  • Patent number: 10637491
    Abstract: A transceiver system includes a clock generator and an analog-to-digital circuit (ADC). The transceiver system also includes a coupling correction circuit coupled to the clock generator and to the ADC, wherein the coupling correction circuit is configured to provide an in-phase correction and a quadrature-phase correction to a signal received by the ADC.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: April 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Raja Reddy Patukuri, Jagannathan Venkataraman, Shagun Dusad
  • Patent number: 10581451
    Abstract: The disclosure provides a receiver with high dynamic range. The receiver includes a photodiode that generates a current signal. A coupling capacitor is coupled to the photodiode, and generates a modulation signal in response to the current signal received from the photodiode. A sigma delta analog to digital converter (ADC) is coupled to the coupling capacitor, and generates a digital data in response to the modulation signal. A digital mixer is coupled to the sigma delta ADC, and generates an in-phase component and a quadrature component corresponding to the digital data. A processor is coupled to the digital mixer, and processes the in-phase component and the quadrature component corresponding to the digital data.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: March 3, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jagannathan Venkataraman, Prabu Sankar Thirugnanam, Raja Reddy Patukuri, Sandeep Kesrimal Oswal
  • Patent number: 10078134
    Abstract: The disclosure provides a circuit. The circuit includes a first analog to digital converter (ADC) that generates a coarse output in response to a first input and a second input. The first ADC generates the coarse output in a differential phase. A pipeline ADC generates a differential signal in response to the coarse output, the first input and the second input. The pipeline ADC generates the differential signal in a common-mode phase. The first ADC generates a common mode signal in the common-mode phase.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: September 18, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Raja Reddy Patukuri, Jagannathan Venkataraman, Prabu Sankar Thirugnanam
  • Publication number: 20180234107
    Abstract: The disclosure provides a receiver with high dynamic range. The receiver includes a photodiode that generates a current signal. A coupling capacitor is coupled to the photodiode, and generates a modulation signal in response to the current signal received from the photodiode. A sigma delta analog to digital converter (ADC) is coupled to the coupling capacitor, and generates a digital data in response to the modulation signal. A digital mixer is coupled to the sigma delta ADC, and generates an in-phase component and a quadrature component corresponding to the digital data. A processor is coupled to the digital mixer, and processes the in-phase component and the quadrature component corresponding to the digital data.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventors: Jagannathan Venkataraman, Prabu Sankar Thirugnanam, Raja Reddy Patukuri, Sandeep Kesrimal Oswal
  • Publication number: 20160329906
    Abstract: The disclosure provides a circuit. The circuit includes a first analog to digital converter (ADC) that generates a coarse output in response to a first input and a second input. The first ADC generates the coarse output in a differential phase. A pipeline ADC generates a differential signal in response to the coarse output, the first input and the second input. The pipeline ADC generates the differential signal in a common-mode phase. The first ADC generates a common mode signal in the common-mode phase.
    Type: Application
    Filed: September 11, 2015
    Publication date: November 10, 2016
    Inventors: Raja Reddy PATUKURI, Jagannathan Venkataraman, Prabu Sankar Thirugnanam
  • Publication number: 20150377964
    Abstract: The disclosure provides a circuit capable of generating programmable test patterns for a pixel array. The circuit includes a pixel array having a plurality of pixels arranged in a plurality of rows and a plurality of columns. A built-in-tester is coupled to the pixel array. The built-in-tester includes a data pattern register that generates a plurality of test patterns. A switching logic circuit is coupled between the data pattern register and the pixel array. The switching logic circuit provides to each column of the plurality of columns one of a first voltage and a second voltage based on a test pattern of the plurality of test patterns received from the data pattern register.
    Type: Application
    Filed: June 30, 2015
    Publication date: December 31, 2015
    Inventors: Raja Reddy PATUKURI, Jagannathan Venkataraman
  • Publication number: 20150260571
    Abstract: The disclosure provides a receiver with high dynamic range. The receiver includes a photodiode that generates a current signal. A coupling capacitor is coupled to the photodiode, and generates a modulation signal in response to the current signal received from the photodiode. A sigma delta analog to digital converter (ADC) is coupled to the coupling capacitor, and generates a digital data in response to the modulation signal. A digital mixer is coupled to the sigma delta ADC, and generates an in-phase component and a quadrature component corresponding to the digital data. A processor is coupled to the digital mixer, and processes the in-phase component and the quadrature component corresponding to the digital data.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 17, 2015
    Inventors: Jagannathan Venkataraman, Prabu Sankar Thirugnanam, Raja Reddy Patukuri, Sandeep Kesrimal Oswal